Citation: | HUANG Shuai, LIU Chuanzheng, GODA Katsuichiro. Applicability of smooth particle hydrodynamics method to large sliding deformation of saturated slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 336-344. DOI: 10.11779/CJGE20211274 |
[1] |
彭孔曙, 胡敏云.有限元法在临水边坡设计中的应用[J].科技通报, 2012, 28(9): 142-146. doi: 10.3969/j.issn.1001-7119.2012.09.033
PENG Kongxu, , HU Minyun. Finite element method in the design of slope adjacent to water[J]. Bulletin of Science and Technology, 2012, 28(9): 142-146. (in Chinese) doi: 10.3969/j.issn.1001-7119.2012.09.033
|
[2] |
ISHII Y, OTA K, KURAOKA S, et al. Evaluation of slope stability by finite element method using observed displacement of landslide[J]. Landslides, 2012, 9(3): 335-348. doi: 10.1007/s10346-011-0303-7
|
[3] |
黄帅, 吕悦军.强震作用下动孔隙水压力对砂质边坡动力响应的影响[J].水运工程, 2015(10): 158-167. doi: 10.3969/j.issn.1002-4972.2015.10.028
HUANG Shuai, LYU Yuejun. Influence of dynamic pore water pressure on dynamic response of sandy slope under strong earthquake[J]. Port & Waterway Engineering, 2015(10): 158-167. (in Chinese) doi: 10.3969/j.issn.1002-4972.2015.10.028
|
[4] |
董士杰, 魏红卫.地震作用下土工合成材料加筋土边坡动力分析[J].铁道科学与工程学报, 2015, 12(4): 778-783. doi: 10.3969/j.issn.1672-7029.2015.04.010
DONG Shijie, WEI Hongwei. Dynamic analysis of geosynthetic reinforced soil slope under seismic action[J]. Journal of Railway Science and Engineering, 2015, 12(4): 778-783. (in Chinese) doi: 10.3969/j.issn.1672-7029.2015.04.010
|
[5] |
王飞, 吴红刚, 郭春香.碎石土路堑高边坡地震动力响应过程分析[J].中国地质灾害与防治学报, 2020, 31(1): 18-24. doi: 10.16031/j.cnki.issn.1003-8035.2020.01.03
WANG Fei, WU Honggang, GUO Chunxiang. Dynamic response of high cut based a numerical simulation slope to earthquake[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 18-24. (in Chinese) doi: 10.16031/j.cnki.issn.1003-8035.2020.01.03
|
[6] |
YIN Y P, LI B, WANG W P. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides, 2015, 12(3): 537-547. doi: 10.1007/s10346-014-0497-6
|
[7] |
WU H, ATANGANA NJOCK P G, CHEN J J, et al. Numerical simulation of spudcan-soil interaction using an improved smoothed particle hydrodynamics (SPH) method[J]. Marine Structures, 2019, 66: 213-226. doi: 10.1016/j.marstruc.2019.04.007
|
[8] |
BUI H H, FUKAGAWA R, SAKO K, et al. Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH)[J]. Géotechnique, 2011, 61(7): 565-574. doi: 10.1680/geot.9.P.046
|
[9] |
HUANG Y, ZHANG W J, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275-283. doi: 10.1007/s10346-011-0285-5
|
[10] |
唐宇峰, 施富强, 廖学燕.基于SPH的边坡稳定性计算中失稳判据研究[J].岩土工程学报, 2016, 38(5): 904-908. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16564.shtml
TANG Yufeng, SHI Fuqiang, LIAO Xueyan. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 904-908. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16564.shtml
|
[11] |
NONOYAMA H, MORIGUCHI S, SAWADA K, et al. Slope stability analysis using smoothed particle hydrodynamics (SPH) method[J]. Soils and Foundations, 2015, 55(2): 458-470. doi: 10.1016/j.sandf.2015.02.019
|
[12] |
ZHANG Z Y, JIN X G, BI J. Development of an SPH-based method to simulate the progressive failure of cohesive soil slope[J]. Environmental Earth Sciences, 2019, 78(17): 537. doi: 10.1007/s12665-019-8507-6
|
[13] |
张卫杰, 高玉峰, 黄雨, 等.水土耦合SPH数值模型的正则化修正及其应用[J].岩土工程学报, 2018, 40(2): 262-269. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17280.shtml
ZHANG Weijie, GAO Yufeng, HUANG Yu, et al. Normalized correction of soil-water-coupled SPH model and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 262-269. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17280.shtml
|
[14] |
张卫杰, 郑虎, 王占彬, 等.基于三维并行SPH模型的土体流滑特性研究[J].工程地质学报, 2018, 26(5): 1279-1284. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805021.htm
ZHANG Weijie, ZHENG Hu, WANG Zhanbin, et al. Study on flowing behavior of soil based on three dimen-sional and parallelized sph model[J]. Journal of Engineering Geology, 2018, 26(5): 1279-1284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805021.htm
|
[15] |
DAI Z L, HUANG Y, CHENG H L, et al. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake[J]. Engineering Geology, 2014, 180: 21-33. doi: 10.1016/j.enggeo.2014.03.018
|
[16] |
HUANG Y, DAI Z L. Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method[J]. Engineering Geology, 2014, 168: 86-97. doi: 10.1016/j.enggeo.2013.10.022
|
[17] |
FULK D A. A numerical analysis of smoothed particle hydrodynamics[D]. Wright-Patterson AFB: Thesis Air Force Inst Tech, 1994.
|
[18] |
LIU G R, LIU M B. Smoothed Particle Hydrodynamics-A Meshfree Particle Method[M]. Singapore: World Scientific Publishing Co Pte Ltd, 2003.
|
[19] |
MAO Z, LIU G R, DONG X. A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. Computers and Geotechnics, 2017, 92: 77-95. doi: 10.1016/j.compgeo.2017.07.024
|
[20] |
岩本哲也, 小野祐輔.弾性波伝播問題に対する粒子法の適用性[J].応用力学論文集, 2009, 12: 611-622.
TETSUYA I, YUSUKE O. Applicability of meshfree particle method to elastic wave propagation analysis[J]. Journal of Applied Mechanics, 2009, 12: 611-622. (in Japanese)
|
[21] |
CHEN J K, BERAUN J E, JIH C J. Completeness of corrective smoothed particle method for linear elastodynamics[J]. Computational Mechanics, 1999, 24(4): 273-285.
|
[22] |
马红权, 张学莹. SPH的核近似和粒子近似[J].信息技术, 2012, 36(7): 170-171,175. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201207049.htm
MA Hongquan, ZHANG Xueying. Kernel approximation and particle approximation about SPH[J]. Information Technology, 2012, 36(7): 170-171,175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDZJ201207049.htm
|
[23] |
社本康広, 時松孝次, 有泉浩蔵.一次元有効応力解析の実地盤に対する適用性[J].日本建築学会構造系論文報告集, 1992, 433: 113-119.
YDSUHIRO S, KOHJI T, KOUXO A. Applicability of a one-dimensional effective stress analysis to an existing soil deposit[J]. Journal of Structure Construction Engineering, 1992, 433: 113-119. (in Japanese)
|
[24] |
JENNINGS P C. Periodic response of a general yielding structure[J]. Journal of the Engineering Mechanics Division, 1964, 90(2): 131-166.
|
[25] |
GRAY J P, MONAGHAN J J, SWIFT R P. SPH elastic dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49): 6641-6662.
|
[26] |
HA H, BUI K, SAKO R, et al. Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method[J]. Journal of Terramechanics, 2007, 44(5): 339-346.
|
[27] |
冷艺, 栾茂田, 许成顺, 等.应力历史对饱和砂土力学性状影响的试验研究[J].岩土力学, 2009, 30(5): 1257-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905012.htm
LENG Yi, LUAN Maotian, XU Chengshun, et al. Experimental study of effect of stress history on mechanical properties of saturated sand under complex stress conditions[J]. Rock and Soil Mechanics, 2009, 30(5): 1257-1263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905012.htm
|
[28] |
黄帅, 宋波, 牛立超, 等.地震作用下动孔隙水压力对边坡永久位移影响的简便计算方法[J].建筑结构学报, 2014, 35(3): 215-221. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403028.htm
HUANG Shuai, SONG Bo, NIU Lichao, et al. Simple calculation method of permanent displacement of slope influenced by dynamic pore water pressure under earthquake[J]. Journal of Building Structures, 2014, 35(3): 215-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403028.htm
|
[29] |
HUANG S, LYU Y J, SHA H J, et al. Seismic performance assessment of unsaturated soil slope in different groundwater levels[J]. Landslides, 2021, 18: 2813-2833.
|
[30] |
霍沿东.基于极限分析上限方法的海底黏性土边坡地震稳定性评[D].大连: 大连理工大学, 2018.
HUO Yandong. Evaluation of Seismic Stability of Submarine Clay Slopes Based on Upper Bound Approach of Limit Analysis[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
|
[1] | ZHENG Yingren, ZHANG Jinliang, YIN Dewen, SHAO Ying, SU Kai, WU Hao, ZHANG Zhipei. Critical sliding surface theorem and numerical solution method based on lower bound model[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 438-442. DOI: 10.11779/CJGE20230988 |
[2] | Numerical simulation of the complete instability process of shield tunnel excavation face based on SPH method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240962 |
[3] | SONG Jian, LU Zhuxi, XIE Huawei, ZHANG Fei, JI Jian, GAO Yufeng. Analysis of coupled shallow and deep sliding of slopes induced by earthquake based on limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1141-1150. DOI: 10.11779/CJGE20220035 |
[4] | YANG Shan-tong, JIANG Qing-hui, YIN Tao, YAO Chi, CHEN Na, ZHOU Bin. Search of critical slip surface of slopes using improved particle swarm optimization method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1411-1417. DOI: 10.11779/CJGE201508008 |
[5] | LIU Ke-Ling, WANG Chun-lei. Critical slip surface of high-steep slopes based on theory of stress effect coefficient[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 415-421. |
[6] | ZHANG Yu-cheng, YANG Guang-hua, HU Hai-ying, LIU Peng, ZHONG Zhi-hui. Searching for critical slip surface in soil slopes based on calculated results by variable modulus elastoplastic strength reduction method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 14-22. |
[7] | QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Stochastic analysis method of critical slip surfaces in soil slopes considering spatial variability[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 745-753. |
[8] | QI Shengwen. Evaluation of the permanent displacement of rock mass slope considering deterioration of slide surface during earthquake[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 452-457. |
[9] | ZHANG Luyu, ZHANG Jianmin. Extended algorithm using Monte Carlo techniques for searching general critical slip surface in slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 857-862. |
[10] | Zhu Dayong. Critical Slip Field of Slope and Its Numerical Simulation[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 65-71. |
1. |
黄帅,王中根,李昱,冯宇翔. 基于改进SPH方法的滑坡涌浪对大坝结构冲击响应规律. 工程科学与技术. 2025(01): 120-131 .
![]() | |
2. |
魏星,程世涛,谢相焱,陈睿. 考虑强度速率衰减效应的地震滑坡SPH-FEM模拟. 岩土工程学报. 2024(08): 1753-1761 .
![]() | |
3. |
郑厚国,周永强,刘烨. 高水头作用下饱和边坡破坏物质点法模拟研究. 能源与环保. 2023(05): 276-283+288 .
![]() |