• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TANG Hongxiang, CUI Jiaming, ZHANG Xue, ZHANG Lei, LIU Letian. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. DOI: 10.11779/CJGE20211244
Citation: TANG Hongxiang, CUI Jiaming, ZHANG Xue, ZHANG Lei, LIU Letian. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. DOI: 10.11779/CJGE20211244

Cosserat-particle finite element method for large deformation analysis of rock and soil

More Information
  • Received Date: December 24, 2021
  • Available Online: March 15, 2023
  • The particle finite element method (PFEM) inherits the solid mathematical foundation of the finite element method and possesses the capability of modeling the problems with large deformation and complex boundary, so it has been widely used in the fields of fluid-structure coupling and geotechnical engineering. While in the process of large deformation of rock and soil, strain softening and strain localization often occur. In order to keep the well-posedness for the large deformation problem, it is necessary to introduce the regularization mechanism into the constitutive equation. The Cosserat continuum theory is one of the effective methods to introduce the regularization mechanism. Combining the PFEM with the Cosserat continuum theory, the Cosserat-PFEM method is developed. Besides, unlike the traditional PFEM using triangular elements, in the Cosserat-PFEM method the boundary recognition and the mesh generation are carried out independently, which makes it possible to use quadrilateral elements, so as to improve the numerical accuracy and overcome the tendency of triangular elements to simulate the strain localization. The examples show that the developed Cosserat-PFEM method and the programme explored based on the ABAQUS software are reliable and efficient, and expand the application scope of the PFEM. It is also demonstrated that the Cosserat-PFEM has the capability to simulate large deformation problems and keep the well-posedness of the problems, and is suitable for the simulation of large deformation and progressive failure problems.
  • [1]
    HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1997, 135(2): 203-216. doi: 10.1006/jcph.1997.5702
    [2]
    HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327-350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
    [3]
    YU L, HU Y X, LIU J, et al. Numerical study of spudcan penetration in loose sand overlying clay[J]. Computers and Geotechnics, 2012, 46: 1-12. doi: 10.1016/j.compgeo.2012.05.012
    [4]
    NOH B W F. CEL: A time dependent two space-dimensional, coupled Eulerian Lagrangian code[C]// Methods of Computational Physics, New York, 1964.
    [5]
    PUCKER T, GRABE J. Numerical simulation of the installation process of full displacement piles[J]. Computers and Geotechnics, 2012, 45: 93-106. doi: 10.1016/j.compgeo.2012.05.006
    [6]
    LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
    [7]
    廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013, 43(2): 237-264. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201302003.htm

    LIAN Yanping, ZHANG Fan, LIU Yan, et al. Material point method and its applications[J]. Advances in Mechanics, 2013, 43(2): 237-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201302003.htm
    [8]
    SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
    [9]
    孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. doi: 10.11779/CJGE201507007

    SUN Yujin, SONG Erxiang. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225. (in Chinese) doi: 10.11779/CJGE201507007
    [10]
    高宇新, 朱鸿鹄, 张春新, 等. 砂土中锚板上拔三维物质点法模拟研究[J]. 岩土工程学报, 2022, 44(2): 295-304. doi: 10.11779/CJGE202202011

    GAO Yuxin, ZHU Honghu, ZHANG Chunxin, et al. Three- dimensional uplift simulation of anchor plates in sand using material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 295-304. (in Chinese) doi: 10.11779/CJGE202202011
    [11]
    OÑATE E, IDELSOHN S R, DEL PIN F, et al. The particle finite element method—an overview[J]. International Journal of Computational Methods, 2004, 1(2): 267-307. doi: 10.1142/S0219876204000204
    [12]
    张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569. doi: 10.11779/CJGE201603021

    ZHANG Xue, SHENG Daichao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. (in Chinese) doi: 10.11779/CJGE201603021
    [13]
    ZHANG X, SLOAN S W, OÑATE E. Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1806-1822. doi: 10.1002/nag.2815
    [14]
    ZHANG X, OÑATE E, TORRES S A G, et al. A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 314-338. doi: 10.1016/j.cma.2018.07.043
    [15]
    LI H C, ZHANG S. Implement the particle finite element method in ABAQUS[J]. Japanese Geotechnical Society Special Publication, 2020, 8(3): 70-75. doi: 10.3208/jgssp.v08.c16
    [16]
    YUAN W H, WANG H C, ZHANG W, et al. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 2021, 16(8): 2449-2462.
    [17]
    TANG H X, GUAN Y H, ZHANG X, et al. Low-order mixed finite element analysis of progressive failure in pressure-dependent materials within the framework of the Cosserat continuum[J]. Engineering Computations, 2017, 34(2): 251-271.
    [18]
    EDELSBRUNNER H, MÜCKE E P. Three-dimensional alpha shapes[J]. ACM Transactions on Graphics, 1994, 13(1): 43-72.
    [19]
    HU Y, RANDOLPH M F. H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation[J]. Computers and Geotechnics, 1998, 23(1/2): 61-83.
    [20]
    NAZEM M, CARTER J P, AIREY D W. Arbitrary Lagrangian-Eulerian method for dynamic analysis of geotechnical problems[J]. Computers and Geotechnics, 2009, 36(4): 549-557.
    [21]
    TIAN Y H, CASSIDY M J, RANDOLPH M F, et al. A simple implementation of RITSS and its application in large deformation analysis[J]. Computers and Geotechnics, 2014, 56: 160-167.
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 黄永辉,李永杰,杨阳,熊卫国,张智宇. 露天爆破中炸药单耗对岩石破碎块度的数值模拟研究. 工程科学学报. 2024(06): 973-981 .
    2. 佀传琪,王琛,梁家馨,华建,梁发云. 智慧化技术在城市滨海软土工程的应用前景与挑战. 岩土工程学报. 2024(S2): 216-220 . 本站查看
    3. 韦文成,唐洪祥,刘京茂,邹德高. 非线性软化Cosserat连续体模型及其在土体应变局部化有限元分析中的应用. 岩土工程学报. 2024(12): 2492-2502 . 本站查看

    Other cited types(1)

Catalog

    Article views (317) PDF downloads (103) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return