Citation: | TANG Hongxiang, CUI Jiaming, ZHANG Xue, ZHANG Lei, LIU Letian. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. DOI: 10.11779/CJGE20211244 |
[1] |
HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1997, 135(2): 203-216. doi: 10.1006/jcph.1997.5702
|
[2] |
HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327-350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
|
[3] |
YU L, HU Y X, LIU J, et al. Numerical study of spudcan penetration in loose sand overlying clay[J]. Computers and Geotechnics, 2012, 46: 1-12. doi: 10.1016/j.compgeo.2012.05.012
|
[4] |
NOH B W F. CEL: A time dependent two space-dimensional, coupled Eulerian Lagrangian code[C]// Methods of Computational Physics, New York, 1964.
|
[5] |
PUCKER T, GRABE J. Numerical simulation of the installation process of full displacement piles[J]. Computers and Geotechnics, 2012, 45: 93-106. doi: 10.1016/j.compgeo.2012.05.006
|
[6] |
LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. doi: 10.1086/112164
|
[7] |
廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013, 43(2): 237-264. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201302003.htm
LIAN Yanping, ZHANG Fan, LIU Yan, et al. Material point method and its applications[J]. Advances in Mechanics, 2013, 43(2): 237-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201302003.htm
|
[8] |
SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
|
[9] |
孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. doi: 10.11779/CJGE201507007
SUN Yujin, SONG Erxiang. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225. (in Chinese) doi: 10.11779/CJGE201507007
|
[10] |
高宇新, 朱鸿鹄, 张春新, 等. 砂土中锚板上拔三维物质点法模拟研究[J]. 岩土工程学报, 2022, 44(2): 295-304. doi: 10.11779/CJGE202202011
GAO Yuxin, ZHU Honghu, ZHANG Chunxin, et al. Three- dimensional uplift simulation of anchor plates in sand using material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 295-304. (in Chinese) doi: 10.11779/CJGE202202011
|
[11] |
OÑATE E, IDELSOHN S R, DEL PIN F, et al. The particle finite element method—an overview[J]. International Journal of Computational Methods, 2004, 1(2): 267-307. doi: 10.1142/S0219876204000204
|
[12] |
张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569. doi: 10.11779/CJGE201603021
ZHANG Xue, SHENG Daichao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. (in Chinese) doi: 10.11779/CJGE201603021
|
[13] |
ZHANG X, SLOAN S W, OÑATE E. Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1806-1822. doi: 10.1002/nag.2815
|
[14] |
ZHANG X, OÑATE E, TORRES S A G, et al. A unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequences[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 314-338. doi: 10.1016/j.cma.2018.07.043
|
[15] |
LI H C, ZHANG S. Implement the particle finite element method in ABAQUS[J]. Japanese Geotechnical Society Special Publication, 2020, 8(3): 70-75. doi: 10.3208/jgssp.v08.c16
|
[16] |
YUAN W H, WANG H C, ZHANG W, et al. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 2021, 16(8): 2449-2462.
|
[17] |
TANG H X, GUAN Y H, ZHANG X, et al. Low-order mixed finite element analysis of progressive failure in pressure-dependent materials within the framework of the Cosserat continuum[J]. Engineering Computations, 2017, 34(2): 251-271.
|
[18] |
EDELSBRUNNER H, MÜCKE E P. Three-dimensional alpha shapes[J]. ACM Transactions on Graphics, 1994, 13(1): 43-72.
|
[19] |
HU Y, RANDOLPH M F. H-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation[J]. Computers and Geotechnics, 1998, 23(1/2): 61-83.
|
[20] |
NAZEM M, CARTER J P, AIREY D W. Arbitrary Lagrangian-Eulerian method for dynamic analysis of geotechnical problems[J]. Computers and Geotechnics, 2009, 36(4): 549-557.
|
[21] |
TIAN Y H, CASSIDY M J, RANDOLPH M F, et al. A simple implementation of RITSS and its application in large deformation analysis[J]. Computers and Geotechnics, 2014, 56: 160-167.
|
1. |
黄永辉,李永杰,杨阳,熊卫国,张智宇. 露天爆破中炸药单耗对岩石破碎块度的数值模拟研究. 工程科学学报. 2024(06): 973-981 .
![]() | |
2. |
佀传琪,王琛,梁家馨,华建,梁发云. 智慧化技术在城市滨海软土工程的应用前景与挑战. 岩土工程学报. 2024(S2): 216-220 .
![]() | |
3. |
韦文成,唐洪祥,刘京茂,邹德高. 非线性软化Cosserat连续体模型及其在土体应变局部化有限元分析中的应用. 岩土工程学报. 2024(12): 2492-2502 .
![]() |