• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TAN Yun-zhi, HU Yan, ZHAN Shao-hu, LIU Wei, MING Hua-jun. Effects of aggregate sizes on hydro-mechanical performances of treated laterite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2323-2329. DOI: 10.11779/CJGE202112020
Citation: TAN Yun-zhi, HU Yan, ZHAN Shao-hu, LIU Wei, MING Hua-jun. Effects of aggregate sizes on hydro-mechanical performances of treated laterite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2323-2329. DOI: 10.11779/CJGE202112020

Effects of aggregate sizes on hydro-mechanical performances of treated laterite

More Information
  • Received Date: April 14, 2020
  • Available Online: November 30, 2022
  • The laterite is prone to aggregates due to the possession of high-content clay and moisture. It may be difficult to mix uniformly when lime and/or cement is added into the laterite, and further influences the treated effects. Four groups of laterite are selected, with the aggregate sizes of 5.0, 2.0, 1.0 and 0.5 mm, respectively. The mixing ratio of metakaolin-lime-laterite is 5∶5∶90 in dry weight. Then, the mixtures are moistened to the predetermined water content of 33.2% using distilled water. Finally, the hydro-mechanical performances and microstructure tests on the laterite specimens are carried out after compacted and cured to predicted periods. The results show that the linear shrinkage increases and the unconfined compressive strength decreases with the increasing of the aggregate size of the treated laterite. However, the inhibition of the shrinkage and the enhancement of the strength appear after adding metakaolin into the treated laterite with the same aggregate size. This may be ascribed to the following reasons, lime just adheres to the surface of the laterite aggregates, which only forms "bridging" linkage between the aggregates, and does not develop enveloping cementation. The metakaolin, containing plenty of amorphous silicon and aluminum oxides, can quickly capture the calcium ions in calcium hydroxide solution and form cementation hydratessilicon and calcium aluminate owing to having high pozzolanic activity. Meanwhile, the metakaolin also play a role of filling into the inter-pores of soils. Both of them improve the hydro-mechanical performances of the treated laterite.
  • [1]
    GIDIGASU M D. Laterite Soil Engineering-pedogenesis and Engineering principles[M]. Amsterdam: Elsevier, 1976.
    [2]
    王毓华. 红黏土定义论证[C]//第二届全国红土工程地质研讨会, 1991, 贵阳.

    WANG Yu-hua. Definition and demonstration of laterite[C]//The Second National Symposium on Laterite Engineering and Geology, 1991, Guiyang. (in Chinese)
    [3]
    谭罗荣, 孔令伟. 特殊岩土工程土质学[M]. 北京: 科学出版社, 2006.

    TAN Luo-rong, KONG Ling-wei. Problematicsoil Engineering Pedology[M]. Beijing: Science Press, 2006. (in Chinese)
    [4]
    谈云志. 压实红黏土的工程特征与湿热耦合效应研究[D]. 北京: 中国科学院研究生院, 2009.

    TAN Yun-zhi. Study on Engineering Characteristics and Moisture-heat Coupling Effect of Compacted Laterite Soil[D]. Beijing: Graduate College of Chinese Academy of Science, 2009. (in Chinese)
    [5]
    谈云志, 胡焱, 曹玲, 等. 偏高岭土协同石灰钝化红黏土水敏性的机制[J]. 岩土力学, 2020, 41(7): . https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007007.htm

    TAN Yun-zhi, HU Yan, CAO Ling, et al. Mechanism of metakaolin and lime modification of water sensitivity for compacted laterite[J]. Rock and Soil Mechanics, 2020, 41(7): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007007.htm
    [6]
    SHI B, MURAKAMI Y, WU Z S. Orientation of aggregates of fine-grained soil: quantification and application[J]. Engineering Geology, 1998, 50(1/2): 59-70.
    [7]
    蔡奕, 施斌, 刘志斌, 等. 团聚体大小对填筑土强度影响的试验研究[J]. 岩土工程学报, 2005, 27(12): 1482-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512021.htm

    CAI Yi, SHI Bin, LIU Zhi-bin, et al. Experimental study on effect of aggregate size on strength of filled soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1482-1486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200512021.htm
    [8]
    WANG Y J, CUI Y J, TANG A M, et al. Effects of aggregate size on the compressibility and air permeability of lime-treated fine-grained soil[J]. Engineering Geology, 2017, 228: 167-172. doi: 10.1016/j.enggeo.2017.08.005
    [9]
    谈云志, 郑爱, 吴翩, 等. 红黏土承载比的土团尺寸效应研究[J]. 岩土力学, 2013, 34(5): 1242-1246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305002.htm

    TAN Yun-zhi, ZHENG Ai, WU Pian, et al. Effect of aggregate soil size on California bearing ratio values of laterite soil[J]. Rock and Soil Mechanics, 2013, 34(5): 1242-1246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305002.htm
    [10]
    TANG A M, VU M N, CUI Y J. Effects of the maximum soil aggregates size and cyclic wetting-drying on the stiffness of a lime-treated clayey soil[J]. Géotechnique, 2011, 61(5): 421-429. doi: 10.1680/geot.SIP11.005
    [11]
    公路路面基层施工技术规范:JTJ034—2000[S]. 2000.

    Technical Guidelines for Construction of Highway Roadbases: JTG 034—2000[S]. 2000. (in Chinese)
    [12]
    公路土工试验规程:JTG E40—2007[S]. 2007.

    Test Methods of Soils for Highway Engineering: JTG E40—2007[S]. 2007. (in Chinese)
    [13]
    AMBROISE J, MAXIMILIEN S, PERA J. Properties of Metakaolin blended cements[J]. Advanced Cement Based Materials, 1994, 1(4): 161-168. doi: 10.1016/1065-7355(94)90007-8
    [14]
    王伟鹏, 刘建立, 张佳宝, 等. 基于激光衍射的土壤粒径测定法的评价与校正[J]. 农业工程学报, 2014, 30(22): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201422020.htm

    WANG Wei-peng, LIU Jian-li, ZHANG Jia-bao, et al. Evaluation and correction of measurement using diffraction method for soil particle size distribution[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 163-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201422020.htm
    [15]
    谈云志, 胡焱, 邓永锋, 等. 偏高岭土协同石灰抑制红黏土收缩的行为与机制[J]. 岩土力学, 2019, 40(11): 4213-4219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911011.htm

    TAN Yun-zhi, HU Yan, DENG Yong-feng, et al. Behavior and mechanism of laterite shrinkage inhibition with lime and meta-Kaolin mixture[J]. Rock and Soil Mechanics, 2019, 40(11): 4213-4219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911011.htm
    [16]
    孔令伟, 罗鸿禧, 袁建新. 黏土有效胶结特征的初步研究[J]. 岩土工程学报, 1995, 17(5): 42-47.

    KONG Ling-wei, LUO Hong-xi, YUAN Jian-xin. Preliminary study on the effective cementation characteristics of the red clay[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 42-47. (in Chinese)
    [17]
    张先伟, 孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报, 2014, 36(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401007.htm

    ZHANG Xian-wei, KONG Ling-wei. Interaction between iron oxide colloids and clay minerals and its effect on properties of caly[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 65-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401007.htm
    [18]
    OSULA D O A. Lime modification of problem laterite[J]. Engineering Geology, 1991, 30(2): 141-154.
    [19]
    INGLESOH . Soil Stabilization: Principles and Practices[M]. New York: Wiley, 1973.
    [20]
    杨志强, 郭见扬. 石灰处理土的物理力学性质及其微观机理的研究[J]. 岩土力学, 1991, 12(3): 11-23. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199103001.htm

    YANG Zhi-qiang, GUO Jian-yang. The Physio-mechanical properties and Micro-mechanism in Lime-soil system[J]. Rock and Soil Mechanics, 1991, 12(3): 11-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199103001.htm
    [21]
    MURRAY H H. Overview—clay mineral applications[J]. Applied Clay Science, 1991, 5(5/6): 379-395.
  • Cited by

    Periodical cited type(4)

    1. 储诚富,王雨航,宗文强. 团聚体级配对固废改良膨胀土耐久性的影响. 建筑材料学报. 2024(03): 237-244 .
    2. 郑刚,张军辉,章定文,吴江斌,周海祚. 地基处理技术现状与发展. 土木工程学报. 2024(07): 51-70 .
    3. 李俊峰. 不同压实度下红黏土的三轴排水强度特性研究. 四川建材. 2023(02): 65-68 .
    4. 林永胜. 高速公路改良风化砂-红黏土路基填料永久变形试验研究. 公路交通技术. 2023(04): 1-6 .

    Other cited types(5)

Catalog

    Article views (196) PDF downloads (116) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return