• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIONG Feng, JIANG Qing-hui, CHEN Sheng-yun, HU Xiao-chuan. Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2037-2045. DOI: 10.11779/CJGE202111010
Citation: XIONG Feng, JIANG Qing-hui, CHEN Sheng-yun, HU Xiao-chuan. Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2037-2045. DOI: 10.11779/CJGE202111010

Modeling of coupled Darcy-Forchheimer flow in fractured porous media and its engineering application

More Information
  • Received Date: March 22, 2021
  • Available Online: December 01, 2022
  • Aiming to solve the nonlinear flow in fractured porous media, the coupling characteristics between Darcy flow in pores and Forchheimer flow in fractures are described by means of the pressure transfer function. The finite volume numerical form of seepage equations is derived, and the corresponding numerical code is written. The flow solution by the proposed method for single fracture and intersecting fracture is verified against Frih and Arraras’ solution. Based on this method, the fluid flow behavior of a fractured rock deep-buried tunnel is simulated, which shows it has strong applicability to flow in complex fracture system. The nonlinear flow of tunnel is also analyzed. The results show that the hydraulic gradient of surrounding rock is characterized by "large at bottom and small at top", with the maximum difference of 2.5 times. Therefore, the flow rate at the bottom of the tunnel is greater than that at the top. The distribution homogeneity and density of fracture are the important factors that affect the hydraulic behavior of fractured rock tunnels. At certain water pressure, the more fractures concentrated in the direction of water pressure and the greater the density is, the greater the surrounding rock conductivity is and the greater the flow rate of tunnel is. In this condition, water-inflow accident of tunnels will be prone to occur. The research results may provide reference for the waterproof design and engineering practice of fractured rock tunnels.
  • [1]
    LEI Q H, LATHAM J P, TSANG C F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks[J]. Computers and Geotechnics, 2017, 85: 151-176. doi: 10.1016/j.compgeo.2016.12.024
    [2]
    毛昶熙, 陈平, 李祖贻, 等. 裂隙岩体渗流计算方法研究[J]. 岩土工程学报, 1991, 13(6): 1-10. doi: 10.3321/j.issn:1000-4548.1991.06.001

    MAO Chang-xi, CHEN Ping, LI Zu-yi, et al. Study on computation methods of seepage flow in fractured rock masses[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1991.06.001
    [3]
    张有天. 从岩石水力学观点看几个重大工程事故[J]. 水利学报, 2003, 34(5): 1-10. doi: 10.3321/j.issn:0559-9350.2003.05.001

    ZHANG You-tian. Analysis on several catastrophic failures of hydraulic projects in view of rock hydraulics[J]. Journal of Hydraulic Engineering, 2003, 34(5): 1-10. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.05.001
    [4]
    周志芳, 王锦国. 裂隙介质水动力学[M]. 北京: 中国水利水电出版社, 2004.

    ZHOU Zhi-fang, WANG Jin-guo. Theory of Dynamics of Fluids in Fractured Media[M]. 2004. (in Chinese)
    [5]
    HUYAKORN P S, LESTER B H, FAUST C R. Finite element techniques for modeling groundwater flow in fractured aquifers[J]. Water Resources Research, 1983, 19(4): 1019-1035. doi: 10.1029/WR019i004p01019
    [6]
    ATHANI S S, SHIVAMANTH , SOLANKI C H, et al. Seepage and stability analyses of earth dam using finite element method[J]. Aquatic Procedia, 2015, 4: 876-883. doi: 10.1016/j.aqpro.2015.02.110
    [7]
    MARYŠKA J, SEVERÝN O, VOHRALÍK M. Numerical simulation of fracture flow with a mixed-hybrid FEM stochastic discrete fracture network model[J]. Computational Geosciences, 2005, 8(3): 217-234. doi: 10.1007/s10596-005-0152-3
    [8]
    王恩志. 岩体裂隙的网络分析及渗流模型[J]. 岩石力学与工程学报, 1993, 12(3): 214-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303002.htm

    WANG En-zhi. Network analysis and seepage flow model of fractured rockmass[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(3): 214-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199303002.htm
    [9]
    何杨, 柴军瑞, 唐志立, 等. 三维裂隙网络非稳定渗流数值分析[J]. 水动力学研究与进展A辑, 2007, 22(3): 338-344. doi: 10.3969/j.issn.1000-4874.2007.03.011

    HE Yang, CHAI Jun-rui, TANG Zhi-li, et al. Numerical analysis of 3-D unsteady seepage through fracture network in rock mass[J]. Journal of Hydrodynamics (SerA), 2007, 22(3): 338-344. (in Chinese) doi: 10.3969/j.issn.1000-4874.2007.03.011
    [10]
    李海枫, 张国新, 朱银邦. 裂隙岩体三维渗流网络搜索及稳定渗流场分析[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3447-3454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2004.htm

    LI Hai-feng, ZHANG Guo-xin, ZHU Yin-bang. Three-dimensional seepage network searching of fractured rock mass and steady seepage field analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3447-3454. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2004.htm
    [11]
    ZIMMERMAN R W, HADGU T, BODVARSSON G S. A new lumped-parameter model for flow in unsaturated dual-porosity media[J]. Advances in Water Resources, 1996, 19(5): 317-327. doi: 10.1016/0309-1708(96)00007-3
    [12]
    PERATTA A, POPOV V. A new scheme for numerical modelling of flow and transport processes in 3D fractured porous media[J]. Advances in Water Resources, 2006, 29(1): 42-61. doi: 10.1016/j.advwatres.2005.05.004
    [13]
    张奇华, 徐威, 殷佳霞. 二维任意裂隙网络裂隙-孔隙渗流模型的两种解法[J]. 岩石力学与工程学报, 2012, 31(2): 217-227. doi: 10.3969/j.issn.1000-6915.2012.02.001

    ZHANG Qi-hua, XU Wei, YIN Jia-xia. Two-dimensional fractured porous flow model of arbitrary fracture network and its two solution methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 217-227. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.02.001
    [14]
    阙云, 熊汉, 刘慧芬, 等. 基于非饱和大孔隙流双重介质模型的浸水边坡水力响应数值模拟[J]. 工程科学与技术, 2020, 52(6): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006012.htm

    QUE Yun, XIONG Han, LIU Hui-fen, et al. Numerical simulation of hydraulic response of immersed slope based on dual-permeability model of unsaturated macropore flow[J]. Advanced Engineering Sciences, 2020, 52(6): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202006012.htm
    [15]
    宋晓晨, 徐卫亚. 非饱和带裂隙岩体渗流的特点和概念模型[J]. 岩土力学, 2004, 25(3): 407-411. doi: 10.3969/j.issn.1000-7598.2004.03.016

    SONG Xiao-chen, XU Wei-ya. Features and conceptual models of flow in fractured vadose zone[J]. Rock and Soil Mechanics, 2004, 25(3): 407-411. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.03.016
    [16]
    LANG P S, PALUSZNY A, ZIMMERMAN R W. Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(8): 6288-6307. doi: 10.1002/2014JB011027
    [17]
    蒋中明, 肖喆臻, 唐栋. 坝基岩体裂隙渗流效应数值模拟方法[J]. 水利学报, 2020, 51(10): 1289-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202010011.htm

    JIANG Zhong-ming, XIAO Zhe-zhen, TANG Dong. Numerical analysis method of fluid flow in fractured rock mass of dam foundation[J]. Journal of Hydraulic Engineering, 2020, 51(10): 1289-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202010011.htm
    [18]
    FRIH N, ROBERTS J E, SAADA A. Modeling fractures as interfaces: a model for Forchheimer fractures[J]. Computational Geosciences, 2008, 12(1): 91-104. doi: 10.1007/s10596-007-9062-x
    [19]
    ARRARÁS A, GASPAR F J, PORTERO L, et al. Geometric multigrid methods for Darcy-Forchheimer flow in fractured porous media[J]. Computers & Mathematics With Applications, 2019, 78(9): 3139-3151.
    [20]
    姚池, 邵玉龙, 杨建华, 等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报, 2020, 42(6): 1050-1058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006011.htm

    YAO Chi, SHAO Yu-long, YANG Jian-hua, et al. Effect of nonlinear seepage on flow and heat transfer process of fractured rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1050-1058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006011.htm
    [21]
    HAJIBEYGI H, KARVOUNIS D, JENNY P. A hierarchical fracture model for the iterative multiscale finite volume method[J]. Journal of Computational Physics, 2011, 230(24): 8729-8743.
    [22]
    XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446.
    [23]
    KARIMI-FARD M, DURLOFSKY L J, AZIZ K. An efficient discrete-fracture model applicable for general-purpose reservoir simulators[J]. SPE Journal, 2004, 9(2): 227-236.
  • Related Articles

    [1]HUANG Juan, HE Zhen, YU Jun, HE Weijie. Analytical solutions and application of circular cofferdams considering backseal effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2510-2518. DOI: 10.11779/CJGE20221101
    [2]CHEN Peipei, ZHANG Xingbo, JIN Ming, QI Jilin. Analytical solution of transient seepage problem in unsaturated soil based on principle of homogeneous construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2490-2499. DOI: 10.11779/CJGE20220903
    [3]YU Jun, LI Dongkai, HU Zhongwei, ZHENG Jingfan. Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
    [4]SHU Rong-jun, KONG Ling-wei, WANG Jun-tao, JIAN Tao, ZHOU Zhen-hua. Mechanical behavior of granite residual soil during wetting considering effects of initial unloading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 154-159, 165. DOI: 10.11779/CJGE2022S1028
    [5]GUO Yu-feng, WANG Hua-ning, JIANG Ming-jing. Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
    [6]DOU Jin-xi, ZHANG Gui-jin, CHEN An-zhong, YANG Bo-shi, XIN Rui-liang, JIANG Huang-bin, DUAN Ji-hong, LI Hai. Mechanism of seepage control of pulsating grouting in completely weathered granite stratum[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 309-318. DOI: 10.11779/CJGE202102011
    [7]YAO Xi-he, ZHAO Xiao-bao, GONG Qiu-ming, MA Hong-su, LI Xiao-zhao, TANG Wei, LU Guang-liang, HE Guan-wen. Linear cutting experiments on crack modes of rock under indentation of a single disc cutter[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1705-1713. DOI: 10.11779/CJGE201409018
    [8]WU Li-zhou, HUANG Run-qiu. Analytical analysis of coupled seepage in unsaturated soils considering varying surface flux[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1370-1375.
    [9]XIE Qiang, Carlos Dinis da Gama, YU Xianbin. Acoustic emission behaviors of aplite granite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 745-749.
    [10]DU Shouji, ZHI Hongtao. Experimental research on the mechanical properties of granite rock and concrete after high-temperature[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 482-485.
  • Cited by

    Periodical cited type(9)

    1. 辛灏辉,高卿林,冯鹏,刘玉擎. 桥梁结构中E-GFRP单向板徐变性能与双尺度均匀化数值评估. 工程力学. 2024(08): 93-106 .
    2. 熊壮,杨学祥,范济敏. 充气膨胀控制锚杆的蠕变试验. 科学技术与工程. 2024(26): 11385-11392 .
    3. 陈文杰,叶毅荣. 玻璃纤维筋抗浮锚杆在某工程中的抗拔试验研究与应用. 广东建材. 2024(10): 76-79 .
    4. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    5. 井德胜,白晓宇,王海刚,张明义,李翠翠,焦玉进,闫君,王忠胜. 玻璃纤维增强聚合物锚杆蠕变性能研究进展. 复合材料科学与工程. 2022(02): 119-128 .
    6. 白晓宇,井德胜,张明义,涂兵雄,魏国,吕承禄,黄春霞. 全长黏结非金属抗浮锚杆体系设计方法研究. 中南大学学报(自然科学版). 2022(08): 3168-3177 .
    7. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    8. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    9. 白晓宇,刘雪颖,张明义,井德胜,郑晨. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型. 复合材料学报. 2021(12): 4138-4149 .

    Other cited types(3)

Catalog

    Article views (309) PDF downloads (175) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return