Citation: | CHEN Guo-xing, YUE Wen-ze, RUAN Bin, WANG Yan-zhen. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1967-1975. DOI: 10.11779/CJGE202111002 |
[1] |
DHAKAL Y P, AOI S, KUNUGI T, et al. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan[J]. Earth, Planets and Space, 2017, 69(1): 29. doi: 10.1186/s40623-017-0615-5
|
[2] |
HU J J, TAN J Y, ZHAO J X. New GMPEs for the Sagami bay region in Japan for moderate magnitude events with emphasis on differences on site amplifications at the seafloor and land seismic stations of K-NET[J]. Bulletin of the Seismological Society of America, 2020, 110(5): 2577-2597. doi: 10.1785/0120190305
|
[3] |
TAN J Y, HU J J. A prediction model for vertical-to-horizontal spectral ratios of ground motions on the seafloor for moderate magnitude events for the Sagami Bay region in Japan[J]. Journal of Seismology, 2021, 25(1): 181-199. doi: 10.1007/s10950-020-09932-5
|
[4] |
ZHANG Q, ZHENG X Y. Offshore earthquake ground motions: Distinct features and influence on the seismic design of marine structures[J]. Marine Structures, 2019, 65: 291-307. doi: 10.1016/j.marstruc.2019.02.003
|
[5] |
陈国兴, 陈磊, 景立平, 等. 地铁地下结构抗震分析并行计算显式与隐式算法比较[J]. 铁道学报, 2011, 33(11): 111-118. doi: 10.3969/j.issn.1001-8360.2011.11.019
CHEN Guo-xing, CHEN Lei, JING Li-ping, et al. Comparison of implicit and explicit finite element methods with parallel computing for seismic response analysis of metro underground structures[J]. Journal of the China Railway Society, 2011, 33(11): 111-118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.11.019
|
[6] |
CHEN G X, JIN D D, ZHU J, et al. Nonlinear analysis on seismic site response of Fuzhou basin, China[J]. Bulletin of the Seismological Society of America, 2015, 105(2A): 928-949. doi: 10.1785/0120140085
|
[7] |
RUAN B, ZHAO K, WANG S Y, et al. Numerical modeling of seismic site effects in a shallow estuarine bay (Suai Bay, Shantou, China)[J]. Engineering Geology, 2019, 260: 105233. doi: 10.1016/j.enggeo.2019.105233
|
[8] |
TRIFUNAC M D. Nonlinear soil response as a natural passive isolation mechanism. Paper II. The 1933, Long Beach, California earthquake[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 549-562. doi: 10.1016/S0267-7261(03)00071-X
|
[9] |
陈国兴, 李磊, 丁杰发, 等. 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065, 3076. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009024.htm
CHEN Guo-xing, LI Lei, DING Jie-fa, et al. Nonlinear seismic response characteristics of extremely deep deposit site with volcanic hard rock interlayers[J]. Rock and Soil Mechanics, 2020, 41(9): 3056-3065, 3076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009024.htm
|
[10] |
CHEN G X, RUAN B, ZHAO K, et al. Nonlinear response characteristics of undersea shield tunnel subjected to strong earthquake motions[J]. Journal of Earthquake Engineering, 2020, 24(3): 351-380. doi: 10.1080/13632469.2018.1453416
|
[11] |
NAKAMURA . What is the Nakamura method?[J]. Seismological Research Letters, 2019, 90(4): 1437-1443. doi: 10.1785/0220180376.
|
[12] |
刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. doi: 10.3321/j.issn:1000-4548.2006.09.004
LIU Jing-bo, GU Yin, DU Yi-xin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
|
[13] |
章小龙, 李小军, 陈国兴, 等. 黏弹性人工边界等效荷载计算的改进方法[J]. 力学学报, 2016, 48(5): 1126-1135. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605012.htm
ZHANG Xiao-long, LI Xiao-jun, CHEN Guo-xing, et al. An improved method of the calculation of equivalent nodal forces in viscous-elastic artificial boundary[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1126-1135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605012.htm
|
[14] |
陈国兴, 杨文保, 岳文泽, 等. 金塘海峡海洋土动剪切模量与阻尼比特性研究[J]. 防灾减灾工程学报, 2020, 40(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202001001.htm
CHEN Guo-xing, YANG Wen-bao, YUE Wen-ze, et al. Experimental studies on the dynamic shear modulus and damping ratio characteristics of marine soils in the Jintang strait[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202001001.htm
|
[15] |
CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595-1611.
|
[16] |
WANG J P, YUN X, KUO-CHEN H, et al. CAV site-effect assessment: a case study of Taipei Basin[J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 142-149. doi: 10.1016/j.soildyn.2018.02.028
|
[17] |
BRAY J D, MACEDO J. 6th Ishihara lecture: Simplified procedure for estimating liquefaction-induced building settlement[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 215-231. doi: 10.1016/j.soildyn.2017.08.026
|
[18] |
MONTGOMERY J, BOULANGER R W. Effects of spatial variability on liquefaction-induced settlement and lateral spreading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 4016086. doi: 10.1061/(ASCE)GT.1943-5606.0001584
|
[19] |
陈国兴, 丁杰发, 方怡, 等. 场地类别分类方案研究[J]. 岩土力学, 2020, 41(11): 3509-3522, 3582. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011002.htm
CHEN Guo-xing, DING Jie-fa, FANG Yi, et al. Investigation of seismic site classification scheme[J]. Rock and Soil Mechanics, 2020, 41(11): 3509-3522, 3582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011002.htm
|