• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIAN Zi-wei, HUANG Zhen, ZHANG Rui, LIANG De-xian. Permeability characteristics of fracture zone by high-pressure water injection tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1834-1841. DOI: 10.11779/CJGE202110009
Citation: QIAN Zi-wei, HUANG Zhen, ZHANG Rui, LIANG De-xian. Permeability characteristics of fracture zone by high-pressure water injection tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1834-1841. DOI: 10.11779/CJGE202110009

Permeability characteristics of fracture zone by high-pressure water injection tests

More Information
  • Received Date: January 31, 2021
  • Available Online: December 02, 2022
  • The permeability characteristics in different fracture zones of roadway floor are studied by the high-pressure water injection tests. A total of three boreholes are arranged and five water injection tests are carried out. During the tests, water is injected into one bore hole and the water pressure is monitored in the other bore holes. The step wise increase and decrease of the water injection flow rate is adopted. The flow rates of water injection and the pressures of water injection and monitoring bore holes are recorded. The results show that: (1) At the stage of the increasing water flow rate, the water injection pressure in the fracture zone exhibits the process of "rapid increase, sudden drop and small fluctuation", which conforms to the characteristics of typical hydraulic fracturing pressure curve of rock mass. (2) The difference of fracturing pressure in a single hole is small, the fracture in the fracture zone has strong healing capability, and the repeated water injection tests produce new cracks. (3) The water-injection fracturing pressure and the initial permeability coefficient in the fracture zone decrease and increase with the decrease of the distance between the test point and the roadway floor, respectively. (4) Under the same water injection flow rate, the fracturing width at the stage of the decreasing flow rate is significantly larger than that at the stage of the increasing flow rate, and the water injection after fracturing will cause the fracture zone to be washed gradually. The ratio of water-blocking intensity of the fracture zone to water pressure of the aquifer is defined as the safety factor of water-inrush prevention in the fracture zone, the risk evaluation method for water inrush in the fracture zone is established, and the prevention and control measures for the water inrush in the fracture zone are put forward.
  • [1]
    卜万奎, 茅献彪. 断层倾角对断层活化及底板突水的影响研究[J]. 岩石力学与工程学报, 2009, 28(2): 386-394.

    BU Wan-kui, MAO Xian-biao. Research on effect of fault dip on fault activation and water inrush of coal floor[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 386-394. (in Chinese)
    [2]
    宋振骐, 郝建, 汤建泉, 等. 断层突水预测控制理论研究[J]. 煤炭学报, 2013, 38(9): 1511-1515.

    SONG Zhen-qi, HAO Jian, TANG Jian-quan, SHI Yong-kui, et al. Study on water inrush from fault’s prevention and control theory[J]. Journal of China Coal Society, 2013, 38(9): 1511-1515. (in Chinese)
    [3]
    胡新宇. 采场底板隐伏断层活化及突水机理研究[D]. 徐州: 中国矿业大学, 2015.

    HU Xin-yu. Study on Mechanism of Fault Activation and Water-Inrush Through Insidious Fault in Mining Floor[D]. Xuzhou: China University of Mining and Technology, 2015. (in Chinese)
    [4]
    李晓昭, 罗国煜, 陈忠胜. 地下工程突水的断裂变形活化导水机制[J]. 岩土工程学报, 2002, 24(6): 695-700.

    LI Xiao-zhao, LUO Guo-yu, CHEN Zhong-sheng. The mechanism of deformation and water conduction of fault due to excavation in water inrush in underground engineering[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(6): 695-700. (in Chinese)
    [5]
    WU Q, WANG M, WU X. Investigations of groundwater bursting into coal mine seam floors from fault zones[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(4): 557-571.
    [6]
    白海波, 茅献彪, 吴宇, 等. 高压奥灰水大型逆断层下盘煤层安全开采研究[J]. 岩石力学与工程学报, 2009, 28(2): 246-252.

    BAI Hai-bo, MAO Xian-biao, WU Yu, et al. Research on water-reserved mining with high water pressure under large-scale thrust-fault in ordovician karst[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 246-252. (in Chinese)
    [7]
    张蕊. 带压开采底板构造裂隙带活化导渗机制[D]. 徐州: 中国矿业大学, 2014.

    ZHANG Rui. Activation Seepage Mechanism on Structural Fracture Zone of Coal Seam Floor in Mining Above Aquifer[D]. Xuzhou: China University of Mining and Technology, 2014. (in Chinese)
    [8]
    吴基文, 刘小红. 断层带岩体阻水能力原位测试研究与评价[J]. 岩土力学, 2003, 24(10): 447-450.

    WU Ji-wen, LIU Xiao-hong. In-situ measurement study and evaluation on water-resisting ability of rock mass in fault zone[J]. Rock and Soil Mechanics, 2003, 24(10): 447-450. (in Chinese)
    [9]
    QIAN Z W, HUANG Z, SONG J G. A case study of water inrush incident through fault zone in China and the corresponding treatment measures[J]. Arabian Journal of Geosciences, 2018, 11(14): 1-7.
    [10]
    李文平, 刘启蒙, 孙如华. 构造破碎带滞后突水渗流转换理论与试验研究[J]. 煤炭科学技术, 2011, 39(11): 10-13.

    LI Wen-ping, LIU Qi-meng, SUN Ru-hua. Theoretical and experiment study on vadose conversion of water inrush later occurred from structure broken zone later occurred from structure broken zone[J]. Coal Science and Technology, 2011, 39(11): 10-13. (in Chinese)
    [11]
    武强, 刘金韬, 钟亚平, 等. 开滦赵各庄矿断裂滞后突水数值仿真模拟[J]. 煤炭学报, 2002, 27(5): 511-516.

    WU Qiang, LIU Jin-tao, ZHONG Ya-ping, et al. The numeric simulations of water-bursting time-effect for faults in Zhaogezhuang Coal Mine, Kailuan, China[J]. Journal of China Coal Society, 2002, 27(5): 511-516. (in Chinese)
    [12]
    李海燕, 张红军, 李术才, 等. 断层滞后型突水渗-流转化机制及数值模拟研究[J]. 采矿与安全工程学报, 2017, 34(2): 323-329.

    LI Hai-yan, ZHANG Hong-jun, LI Shu-cai, et al. The seepage-flowing conversion mechanism of the fault lagging water inrush and its numerical simulation[J]. Journal of Mining & Safety Engineering, 2017, 34(2): 323-329. (in Chinese)
    [13]
    张庆松, 王德明, 李术才, 等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426.

    ZHANG Qing-song, WANG De-ming, LI Shu-cai, et al. Development and application of model test system for inrush of water and mud of tunnel in fault rupture zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426. (in Chinese)
    [14]
    HUANG Z, JIANG Z Q, QIAN Z W, et al. Analytical and experimental study of water seepage propagation behavior in the fault[J]. Acta Geodynamica Et Geomaterialia, 2014, 11(4): 361-370.
    [15]
    LIANG D X, JIANG Z Q, GUAN Y Z. Field research: measuring water pressure resistance in a fault-induced fracture zone[J]. Mine Water and the Environment, 2015, 34(3): 320-328.
    [16]
    HUANG Z, JIANG Z Q, TANG X, et al. In situ measurement of hydraulic properties of the fractured zone of coal mines[J]. Rock Mechanics and Rock Engineering, 2016, 49(2): 603-609.
    [17]
    张德强, 孙兴伟, 王敬勇, 等. DG水电站F3缓倾断层原位高压渗透试验分析[J]. 水电与新能源, 2020, 34(11): 12-19.

    ZHANG De-qiang, SUN Xing-wei, WANG Jing-yong, et al.Analysis of the in-situ high pressure permeability test of F3 gently inclined fault in DG hydropower station project[J]. Hydropower and New Energy, 2020, 34(11): 12-19. (in Chinese)
    [18]
    张世殊. 溪洛渡水电站坝基岩体钻孔常规压水与高压注水试验成果比较[J]. 岩石力学与工程学报, 2002, 2l(3): 385-387.

    ZHANG Shi-shu. Comparison of results of conventional and high water-pressure tests on the dam foundation rock masses of Xiluodu hydroelectric station[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(3): 385-387. (in Chinese)
    [19]
    水利水电工程钻孔注水试验规程:SL31—2003[S]. 2003.

    Specifications for Rock Test in Water Conservancy and Hydroelectric Engineering: SL31—2003[S]. 2003. (in Chinese)
    [20]
    QIAN Zi-wei, JIANG Zhen-quan, GUAN Yun-zhang. Evolution of the hydraulic properties of deep fault zone under high water pressure[J]. Journal of Earth System Science, 2020, 129(4): 1-7.
    [21]
    殷黎明, 杨春和, 罗超文, 等. 高压注水试验在深钻孔中的应用[J]. 岩土力学, 2005, 26(10): 1692-1694.

    YIN Li-ming, YANG Chun-he, LUO Chao-wen, et al. Application of high water-pressure test to deep borehole[J]. Rock and Soil Mechanics, 2005, 26(10): 1692-1694. (in Chinese)
    [22]
    钱家忠, 赵卫东, 潘国营. 单一流迳基岩裂隙水流态的实验研究[J]. 焦作工学院学报(自然科学版), 2000, 19(3): 192-195.

    QIAN Jia-zhong, ZHAO Wei-dong, PAN Guo-ying. The experimental study of motion type of the flow in a single fracture[J]. Journal of Jiaozuo Institute of Technology (Natural Science), 2000, 19(3): 192-195. (in Chinese)
    [23]
    蒋中明, 傅胜, 李尚高, 等. 高压引水隧洞陡倾角断层岩体高压注水试验研究[J]. 岩石力学与工程学报, 2007, 26(11): 2318-2323.

    JIANG Zhong-ming, FU Sheng, LI Shang-gao, et al. High pressure permeability test on hydraulic tunnel with steep obliquity faults under high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2318-2323. (in Chinese)
    [24]
    ЛОМИЗЕ M. Фильтрация втрещиноватых породах[M]. MockBa: Госэнергоизат, 1951.

    ЛОМИЗЕ M. Penetration of Broken Rock[M]. Moscow: National Energy, 1951. (in Russian)
    [25]
    РОММ Е С. Фильтрационные своистьа трещиновтых горных пород[M]. Москва: Издательстьо Недра, 1966.

    РОММ Е С. Permeability Characteristics of Fractured Rock[M]. Moscow: Nedra Press, 1966. (in Russian)
    [26]
    速宝玉, 詹美礼, 赵坚. 光滑裂隙水流模型实验及其机理初探[J]. 水利学报, 1994(5): 19-24.

    SU Bao-yu, ZHAN Mei-li, ZHAO Jian. The model test of the flow in smooth fracture and the study of its mechanism[J]. Journal of Hydraulic Engineering, 1994(5): 19-24. (in Chinese)
  • Related Articles

    [1]SHENG Zhi-qiang, SHI Yu-cheng, SUN Jun-jie, QIU Ren-dong, LU Yu-xia, LIU Kun, WAN Xiu-hong. Three-dimensional FEM analysis of settlement and deformation of pile-soil system under vertical load using ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 366-371.
    [2]LIANG Fa-yun, CHEN Hai-bing, CHEN Sheng-li. Integral equation method and parametric analysis for interaction of laterally loaded pile groups[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 848-854.
    [3]Settlement analysis of pile groups in layered elastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
    [4]CHEN Longzhu, CAO Ming, CHEN Shengli. An interaction factor approach and parametric analysis for piled raft foundation[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 155-159.
    [5]HONG Xin, YANG Min. Analysis for interaction of pile groups based on three-dimensional elastic theory[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1858-1864.
    [6]SUN Xiaoli, YANG Min. Approximative analysis for piled rafts by pile load tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1013-1018.
    [7]LIAO Xionghua, ZHOU Jian, ZHANG Kexu, LI Xikui. Application of generalized freedom method to the analysis of soil-st ructure interaction problems[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 672-676.
    [8]Yang Min, Wang Shujuan, Wang Bojun, Zhou Ronghua. Practical analysis of piled raft foundation considering ultimate capacity of piles[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 85-89.
    [9]Wang Xu dong, Wei Dao duo, Zai Jin min. Numerical  Analysis  of  Pile  Groups-Soil-Pile  Cap  Interaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 30-36.
    [10]Liu Jinli, Huang Qiang, Li Hua, Gao Wensheng. Deformation Behaviour and Settlement Calculation of Pile Group under VerticaI Load[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 1-13.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return