• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhi-yu, TANG Zhen-yun, DU Xiu-li. Parameter identification method of time-domain stable discrete rational approximation for frequency response of foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1708-1714. DOI: 10.11779/CJGE202109016
Citation: WANG Zhi-yu, TANG Zhen-yun, DU Xiu-li. Parameter identification method of time-domain stable discrete rational approximation for frequency response of foundations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1708-1714. DOI: 10.11779/CJGE202109016

Parameter identification method of time-domain stable discrete rational approximation for frequency response of foundations

More Information
  • Received Date: November 30, 2020
  • Available Online: December 02, 2022
  • The discrete-time rational approximation function is one of the important methods for establishing dynamic analysis model for foundations. The stability and accuracy of the rational function determine those of dynamic time history analysis. At present, the researches on the discrete-time rational approximation function mainly focus on the establishment of time-domain analysis model, but they cannot guarantee the stability, accuracy and calculation efficiency of the identification function at the same time. Based on the theory of system stability, the rational approximation function is regarded as the combination of first-order and second-order systems, and the stability boundary of identification parameters is derived according to the stability condition of its roots. On this basis, a time-domain stable parameter identification method is proposed by using the genetic algorithm and the sequential quadratic programming algorithm. The stability and accuracy of parameter identification are verified through numerical simulation of different frequency response functions for foundations. Due to the boundary of parameter range, the calculation efficiency is also greatly improved.
  • [1]
    崔春义, 孟坤, 武亚军, 等. 考虑竖向波动效应的径向非均匀黏性阻尼土中管桩纵向振动响应研究[J]. 岩土工程学报, 2018, 40(8): 1433-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808010.htm

    CUI Chun-yi, MENG Kun, WU Ya-jun, et al. Dynamic response of vertical vibration of pipe piles in soils with radial inhomogeneousity and viscous damping considering vertical wave effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1433-1443. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808010.htm
    [2]
    杨林青, 韩泽军, 林皋, 等. 横观各向同性层状地基上任意形状刚性基础动力响应求解与分析[J]. 岩土工程学报, 2020, 42(7): 1257-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007013.htm

    YANG Lin-qing, HAN Ze-jun, LIN Gao, et al. Solution and analysis for dynamic response of arbitrarily shaped rigid foundation on transversely isotropic layered soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1257-1267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007013.htm
    [3]
    赵密, 杜修力. 基础频响有理近似的稳定性和识别:离散时间的递归算法[J]. 工程力学, 2010, 27(1): 141-147,153. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001027.htm

    ZHAO Mi, DU Xiu-li. Stability and identification for rational approximation of foundation frequency response: discrete-time recursive evaluations[J]. Engineering Mechanics, 2010, 27(1): 141-147, 153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201001027.htm
    [4]
    赵密, 杜修力. 基础频响有理近似的稳定性和识别:连续时间的集中参数模型[J]. 工程力学, 2009, 26(12): 76-84, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200912017.htm

    ZHAO Mi, DU Xiu-li. Stability and identification for rational approximation of foundation frequency response: continuous-time lumped-parameter models[J]. Engineering Mechanics, 2009, 26(12): 76-84, 99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200912017.htm
    [5]
    PARONESSO A, WOLF J P. Recursive evaluation of interaction forces and property matrices from unit-impulse response functions of unbounded medium based on balancing approximation[J]. Earthquake Engineering and Structural Dynamics, 1998, 27: 609-618. doi: 10.1002/(SICI)1096-9845(199806)27:6<609::AID-EQE745>3.0.CO;2-M
    [6]
    WOLF JP, MOTOSAKA M. Recursive evaluation of interaction forces of unbounded soil in the time domain from dynamic-stiffness coefficients in the frequency domain[J]. Earthquake Engineering and Structural Dynamics, 1989, 18: 365-376. doi: 10.1002/eqe.4290180305
    [7]
    SAFAK E. Time-domain representation of frequency- dependent foundation impedance functions[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(1): 65-70. doi: 10.1016/j.soildyn.2005.08.004
    [8]
    杜修力, 赵建锋, 韩强. 精度可控地基阻抗力的一种时域差分计算方法[J]. 力学学报, 2008, 40(1): 59-66. doi: 10.3321/j.issn:0459-1879.2008.01.008

    DU Xiu-li, ZHAO Jian-feng, HAN Qiang. Accuracy controllable time-domain difference approach to calculate foundation resisting force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 59-66. (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.01.008
    [9]
    LAUDON A D, KWON O S, GHAEMMAGHAMI A R. Stability of the time-domain analysis method including a frequency-dependent soil-foundation system[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(15): 2737-2754. doi: 10.1002/eqe.2606
    [10]
    GASH R, SEVLABI E E, TACIROGLU E. Implementation and stability analysis of discrete-time filters for approximating frequency-dependent impedance functions in the time domain[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 223-233. doi: 10.1016/j.soildyn.2017.01.021
    [11]
    SUNG Y C, CHEN C C. Z-transferred discerte-time infinite impulse response filter as foundation-soil impedance function for SDOF dynamic structural response considering soil-structure interaction[J]. Earthquake Spectra, 2019, 35(2): 1003-1022.
    [12]
    赵建锋, 杜修力. 地基阻抗力时域递归参数的计算方法及程序实现[J]. 岩土工程学报, 2008, 30(1): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801007.htm

    ZHAO Jian-feng, DU Xiu-li. Computation method and realization procedure for time-domain recursive parameters of ground resistance[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801007.htm
    [13]
    OPPENHEIM A V, WILLSKY A S, NAWBA S H. Signals & Systems[M]. 2nd ed. New Jersey: Prentice-Hall Inc, 1997.
    [14]
    HAN Y C, SABIN G C W. Impedances for radially inhomogeneous viscoelastic soil media[J]. Journal of Engineering Mechanics, 1995, 121(9): 939-947.
    [15]
    黄茂松, 吴志明, 任青. 层状地基中群桩的水平振动特性[J]. 岩土工程学报, 2007, 29(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200701004.htm

    HUANG Mao-song, WU Zhi-ming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200701004.htm
    [16]
    WANG C, YAN C Q, WANG J J, et al. Parametric optimization of steam cycle in PWR nuclear power plant using improved genetic-simplex algorithm[J]. Applied Thermal Engineering, 2017, 125: 830-845.
    [17]
    文学章, 尚守平. 层状地基中桩筏基础的动力阻抗研究[J]. 工程力学, 2009, 26(8): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200908019.htm

    WEN Xue-zhang, SHANG Shou-ping. Research on dynamic impedance functions of pile-raft foundation in layered soil[J]. Engineering Mechanics, 2009, 26(8): 95-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200908019.htm
  • Related Articles

    [1]Experimental study on electrokinetic removal efficiency of copper-lead contaminated loess enhanced by novel hydrogel electrodes and its inherent mechanism[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240249
    [2]YANG Xiao-hui, LU Fa, GUO Nan, ZHU Yan-peng, ZHOU Shuai-kang. Stability calculation and numerical simulation of multi-stage high loess slopes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 172-177. DOI: 10.11779/CJGE2022S1031
    [3]YANG Guang-hua. Difficulties and breakthroughs in calculation of foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1893-1898. DOI: 10.11779/CJGE201910013
    [4]YAN Chang-bin, JIANG Xiao-di, LIU Zhang-heng, YANG Ji-hua, MIAO Dong. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 466-474. DOI: 10.11779/CJGE201903008
    [5]XIE Xing-nan, YE Gen-xi, LIU Jian-xin. On control of accuracy and stability of microseismic location in a mining scale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 899-904. DOI: 10.11779/CJGE201405013
    [6]TENG Yan-jing, SHI Jin-long, GONG Jian-fei, WANG Shu-guang. Analysis method for internal force of pile foundation of complex high-rise buildings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1138-1142.
    [7]PENG Yi-cheng, DING Wen-qi, YAN Zhi-guo, HUANG Xing-cheng, XIAO Bing-feng. Analysis and calculation method of effective bending rigidity ratio in modified routine method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 495-500.
    [8]SU Yonghua, ZHAO Minghua, LI Qinghai, LIU Xiaoming. Approximative method to calculate reliability of slope with stability coefficient to be implicit expression[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1198-1203.
    [9]SHI Weimin, ZHENG Yingren, TANG Boming, ZHANG Luyu. Accuracy and application range of Imbalance Thrust Force Method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 313-317.
    [10]Han Lian. The Group Efficiency of the Horizontal Bearing Capacity on Pile Foundation[J]. Chinese Journal of Geotechnical Engineering, 1984, 6(3): 66-74.

Catalog

    Article views (198) PDF downloads (105) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return