Citation: | HAN Cong-cong, SHEN Kan-min, LI Wei, ZHAO Su-wen, WANG Jing, LIU Jun, KONG Xian-jing. Field tests on installation performance of a new hybrid dynamically installed anchor[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1657-1665. DOI: 10.11779/CJGE202109010 |
[1] |
国振, 王立忠, 李玲玲. 新型深水系泊基础研究进展[J]. 岩土力学, 2011, 32(增刊2): 469-477. doi: 10.16285/j.rsm.2011.s2.060
GUO Zhen, WANG Li-zhong, LI Ling-ling. Recent advances in research of new deepwater anchor foundations[J]. Rock and Soil Mechanics, 2011, 32(S2): 469-477. (in Chinese) doi: 10.16285/j.rsm.2011.s2.060
|
[2] |
刘君, 韩聪聪. 新型锚固基础——动力锚[M]. 北京: 科学出版社, 2019.
LIU Jun, HAN Cong-cong. Dynamically Installed Anchor: A New Anchoring Solution in Offshore Engineering[M]. Beijing: Science Press, 2019. (in Chinese)
|
[3] |
MEDEIROS C J. Low cost anchor system for flexible risers in deep waters[C]//Offshore Technology Conference, 2009, Texas.
|
[4] |
ZIMMERMAN E H, SMITH M, SHELTON J T. (2009). Efficient gravity installed plate anchors for deepwater mooring[C]//Offshore Technology Conference, 2009, Texas.
|
[5] |
LIU Jun, LU Li-hui, YU Long. Keying behavior of suction embedded plate anchors with flap in clay[J]. Ocean Engineering, 2017, 131: 231-243. doi: 10.1016/j.oceaneng.2017.01.008
|
[6] |
WANG L Z, SHEN K M, LI L L, et al. Integrated analysis of drag embedment anchor installation[J]. Ocean Engineering, 2014, 88: 149-163. doi: 10.1016/j.oceaneng.2014.06.028
|
[7] |
黄茂松, 余生兵. 基于旋转块体集的深埋条形锚板上限分析[J]. 岩土工程学报, 2011, 33(5): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105006.htm
HUANG Mao-song, YU Sheng-bing. Upper bound analysis of deep strip anchor based on rotational block set[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 685-692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105006.htm
|
[8] |
王立忠, 舒恒. 不排水黏土中深埋锚板的抗拔承载力[J]. 岩土工程学报, 2009, 31(6): 829-836. doi: 10.3321/j.issn:1000-4548.2009.06.003
WANG Li-zhong, SHU Heng. Pullout capacity of deeply embedded plate anchors in undrained clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 829-836. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.003
|
[9] |
TONG Y M, HAN C C, LIU J. An innovative lightweight gravity installed plate anchor and its keying properties in clay[J]. Applied Ocean Research, 2020, 94: 101974. doi: 10.1016/j.apor.2019.101974
|
[10] |
LIU J, LU L H, HU Y X. Keying behavior of gravity installed plate anchor in clay[J]. Ocean Engineering, 2016, 114: 10-24. doi: 10.1016/j.oceaneng.2016.01.018
|
[11] |
LIU J, HAN C C, YU L. Experimental investigation of the keying process of OMNI-Max anchor[J]. Marine Georesources & Geotechnology, 2019, 37(3): 349-365.
|
[12] |
LIU J, HAN, C C, ZHANG Y Q, et al. An innovative concept of booster for OMNI-Max anchor[J]. Applied Ocean Research, 2018, 76: 184-198. doi: 10.1016/j.apor.2018.05.007
|
[13] |
LIU J, HAN C C, MA Y Y, et al. Experimental investigates on hydrodynamic characteristics of gravity installed anchors with a booster[J]. Ocean Engineering, 2018, 158: 38-53. doi: 10.1016/j.oceaneng.2018.03.074
|
[14] |
LIU J, MA Y Y, HAN C C. CFD analysis on directional stability and terminal velocity of OMNI-Max anchor with a booster[J]. Ocean Engineering, 2019, 171: 311-323. doi: 10.1016/j.oceaneng.2018.10.053
|
[15] |
HAN C C, WANG X, LIU J. A folding-shank gravity installed anchor and its hydrodynamic characteristics in water: physical modelling[J]. Ocean Engineering, 2020, 218: 108213. doi: 10.1016/j.oceaneng.2020.108213
|
[16] |
王煦, 韩聪聪, 刘君. 新型动力安装锚水动力学特性模型试验研究[J]. 海洋工程, 2021, 39(2): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202102006.htm
WANG Xu, HAN Cong-cong, LIU Jun. Experimental investigation on the hydrodynamic characteristics of the light-weight gravity installed plate anchor[J]. The Ocean Engineering, 2021, 39(2): 53-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202102006.htm
|
[17] |
孙兴伟. 新型轻质动力锚沉贯过程模型试验研究[D]. 大连: 大连理工大学, 2019.
SUN Xing-wei. Dynamic Installation Process of An Innovative Light-Weight Gravity Installed Plate Anchor: Physical Modelling[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
|
[18] |
仝玉明. 新型轻质动力锚在c-φ土中安装过程的数值模拟研究[D]. 大连: 大连理工大学, 2020.
TONG Yu-ming. Numerical Simulations on the Installation of An Innovative Lightweight Gravity Installed Plate Anchor in c-φ Soil[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
|
[19] |
卜南乔. 新型轻质动力锚在黏土中沉贯过程的数值模拟研究[D]. 大连: 大连理工大学, 2020.
BU Nan-qiao. Numerical Simulation on the Installation Process of An Innovative Light-Weight Gravity Installed Plate Anchor in Clay[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
|
[20] |
HAN C C, LIU J, ZHANG Y Q, et al. An innovative booster for dynamic installation of OMNI-Max anchors in clay: physical modeling[J]. Ocean Engineering, 2019, 171: 345-360. doi: 10.1016/j.oceaneng.2018.10.029
|
[21] |
HAN C C, ZHANG Y Q, LIU J, et al. Interpreting strength parameters in soft clays from a new free-fall penetrometer[J]. Computers and Geotechnics, 2021, 135: 104157. doi: 10.1016/j.compgeo.2021.104157
|
[22] |
LIU Jun, CHEN Xue-jian, HAN Cong-cong, et al. Estimation of intact undrained shear strength of clay using full-flow penetrometers[J]. Computers and Geotechnics, 2019, 115: 103161. doi: 10.1016/j.compgeo.2019.103161
|
[23] |
FINNIE I M S, RANDOLPH M F. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments[C]//Proceedings of the International Conference on Behavior of Offshore Structures, 1994.
|
[24] |
TIAN Y, GAUDIN C, RANDOLPH M F, et al. Influence of padeye offset on bearing capacity of three-dimensional plate anchors[J]. Canadian Geotechnical Journal, 2015, 52: 682-693. doi: 10.1139/cgj-2014-0120
|
[1] | CAO Xiaolin, ZHOU Fengxi, DAI Guoliang, GONG Weiming. Field tests on dynamic response of pile foundation under excitating loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 171-175. DOI: 10.11779/CJGE2023S10008 |
[2] | REN Yang, LI Tian-bin, YANG Ling, WEI Da-qiang, TANG Jie-ling. Stability analysis of ultra-high-steep reinforced soil-filled slopes based on centrifugal model tests and numerical calculation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 836-844. DOI: 10.11779/CJGE202205006 |
[3] | FAN Ke-wei, LIU Si-hong, XU Si-yuan, WANG Jian-lei. Field tests on retaining wall constructed with soilbags filled with clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2341-2348. DOI: 10.11779/CJGE201812024 |
[4] | CHEN Ren-peng, GU Ming, KONG Ling-gang, ZHANG Zhe-hang, CHEN Yun-min. Large-scale model tests on high-rise platform pile groups under cyclic lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 1990-1996. |
[5] | ZHU Bin, YANG Yong-yao, YU Zhen-gang, GUO Jie-feng, CHEN Yun-min. Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1028-1037. |
[6] | TAO Jing-hui, LIANG Shu-ting, FAN You-wei, ZHANG Yong-le, TAO Mao-zhi. Field tests on high-bearing composite foundation with plain concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 693-700. |
[7] | XU Hua, LI Tianbin, ZHOU Xionghua, ZHANG Rubo. Field tests on JYC ecological base material for slope protection in high-cold areas[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 799-804. |
[8] | LIU Jianhua, ZHAO Minghua, YANG Minghui. Model tests on bridge pile foundation in high and steep rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 372-377. |
[9] | KONG Lingwei, CHEN Jianbin, GUO Aiguo, ZHAO Yanlin, Lv Haibo. Field response tests on expansive soil slopes under atmosphere[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1065-1073. |
[10] | GARTUNG Erwin, HENKEN MELLIES Ulrich, RAMKE Hans Gunter, HU Yifeng. Field tests on landfill covers for evaluation of performance of mineral cover systems[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 403-409. |