• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Cong-cong, SHEN Kan-min, LI Wei, ZHAO Su-wen, WANG Jing, LIU Jun, KONG Xian-jing. Field tests on installation performance of a new hybrid dynamically installed anchor[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1657-1665. DOI: 10.11779/CJGE202109010
Citation: HAN Cong-cong, SHEN Kan-min, LI Wei, ZHAO Su-wen, WANG Jing, LIU Jun, KONG Xian-jing. Field tests on installation performance of a new hybrid dynamically installed anchor[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1657-1665. DOI: 10.11779/CJGE202109010

Field tests on installation performance of a new hybrid dynamically installed anchor

More Information
  • Received Date: February 02, 2021
  • Available Online: December 02, 2022
  • The dynamically installed anchor (DIA) is a newly developed anchoring foundation applied to ocean engineering, which is installed through gravitational energy and used to secure floating structures. On the basis of the existing laboratory investigation and numerical simulation results, the present study aims to investigate the installation performance of a self-developed hybrid DIA (comprising a plate-shaped anchor and a booster) by performing large-scale field tests (sea trials) with the actual environmental loads taken into consideration. In field tests, the effects of the shape of the plate-shaped anchor, the booster weight, and the release height on the final penetration depth of the hybrid DIA within the seabed are investigated. The results indicate that the present hybrid DIA can successfully penetrate into the seabed, which is largely unaffected by environmental loads including wind, wave and current. After installation, the tilt angle from the central axis of the hybrid DIA to the vertical direction is less than 8°. Moreover, a prediction model based on the total energy of the hybrid DIA is proposed to quickly estimate the final penetration depth of the hybrid DIA, which may provide references for engineering design.
  • [1]
    国振, 王立忠, 李玲玲. 新型深水系泊基础研究进展[J]. 岩土力学, 2011, 32(增刊2): 469-477. doi: 10.16285/j.rsm.2011.s2.060

    GUO Zhen, WANG Li-zhong, LI Ling-ling. Recent advances in research of new deepwater anchor foundations[J]. Rock and Soil Mechanics, 2011, 32(S2): 469-477. (in Chinese) doi: 10.16285/j.rsm.2011.s2.060
    [2]
    刘君, 韩聪聪. 新型锚固基础——动力锚[M]. 北京: 科学出版社, 2019.

    LIU Jun, HAN Cong-cong. Dynamically Installed Anchor: A New Anchoring Solution in Offshore Engineering[M]. Beijing: Science Press, 2019. (in Chinese)
    [3]
    MEDEIROS C J. Low cost anchor system for flexible risers in deep waters[C]//Offshore Technology Conference, 2009, Texas.
    [4]
    ZIMMERMAN E H, SMITH M, SHELTON J T. (2009). Efficient gravity installed plate anchors for deepwater mooring[C]//Offshore Technology Conference, 2009, Texas.
    [5]
    LIU Jun, LU Li-hui, YU Long. Keying behavior of suction embedded plate anchors with flap in clay[J]. Ocean Engineering, 2017, 131: 231-243. doi: 10.1016/j.oceaneng.2017.01.008
    [6]
    WANG L Z, SHEN K M, LI L L, et al. Integrated analysis of drag embedment anchor installation[J]. Ocean Engineering, 2014, 88: 149-163. doi: 10.1016/j.oceaneng.2014.06.028
    [7]
    黄茂松, 余生兵. 基于旋转块体集的深埋条形锚板上限分析[J]. 岩土工程学报, 2011, 33(5): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105006.htm

    HUANG Mao-song, YU Sheng-bing. Upper bound analysis of deep strip anchor based on rotational block set[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 685-692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105006.htm
    [8]
    王立忠, 舒恒. 不排水黏土中深埋锚板的抗拔承载力[J]. 岩土工程学报, 2009, 31(6): 829-836. doi: 10.3321/j.issn:1000-4548.2009.06.003

    WANG Li-zhong, SHU Heng. Pullout capacity of deeply embedded plate anchors in undrained clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 829-836. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.003
    [9]
    TONG Y M, HAN C C, LIU J. An innovative lightweight gravity installed plate anchor and its keying properties in clay[J]. Applied Ocean Research, 2020, 94: 101974. doi: 10.1016/j.apor.2019.101974
    [10]
    LIU J, LU L H, HU Y X. Keying behavior of gravity installed plate anchor in clay[J]. Ocean Engineering, 2016, 114: 10-24. doi: 10.1016/j.oceaneng.2016.01.018
    [11]
    LIU J, HAN C C, YU L. Experimental investigation of the keying process of OMNI-Max anchor[J]. Marine Georesources & Geotechnology, 2019, 37(3): 349-365.
    [12]
    LIU J, HAN, C C, ZHANG Y Q, et al. An innovative concept of booster for OMNI-Max anchor[J]. Applied Ocean Research, 2018, 76: 184-198. doi: 10.1016/j.apor.2018.05.007
    [13]
    LIU J, HAN C C, MA Y Y, et al. Experimental investigates on hydrodynamic characteristics of gravity installed anchors with a booster[J]. Ocean Engineering, 2018, 158: 38-53. doi: 10.1016/j.oceaneng.2018.03.074
    [14]
    LIU J, MA Y Y, HAN C C. CFD analysis on directional stability and terminal velocity of OMNI-Max anchor with a booster[J]. Ocean Engineering, 2019, 171: 311-323. doi: 10.1016/j.oceaneng.2018.10.053
    [15]
    HAN C C, WANG X, LIU J. A folding-shank gravity installed anchor and its hydrodynamic characteristics in water: physical modelling[J]. Ocean Engineering, 2020, 218: 108213. doi: 10.1016/j.oceaneng.2020.108213
    [16]
    王煦, 韩聪聪, 刘君. 新型动力安装锚水动力学特性模型试验研究[J]. 海洋工程, 2021, 39(2): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202102006.htm

    WANG Xu, HAN Cong-cong, LIU Jun. Experimental investigation on the hydrodynamic characteristics of the light-weight gravity installed plate anchor[J]. The Ocean Engineering, 2021, 39(2): 53-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC202102006.htm
    [17]
    孙兴伟. 新型轻质动力锚沉贯过程模型试验研究[D]. 大连: 大连理工大学, 2019.

    SUN Xing-wei. Dynamic Installation Process of An Innovative Light-Weight Gravity Installed Plate Anchor: Physical Modelling[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [18]
    仝玉明. 新型轻质动力锚在c-φ土中安装过程的数值模拟研究[D]. 大连: 大连理工大学, 2020.

    TONG Yu-ming. Numerical Simulations on the Installation of An Innovative Lightweight Gravity Installed Plate Anchor in c-φ Soil[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [19]
    卜南乔. 新型轻质动力锚在黏土中沉贯过程的数值模拟研究[D]. 大连: 大连理工大学, 2020.

    BU Nan-qiao. Numerical Simulation on the Installation Process of An Innovative Light-Weight Gravity Installed Plate Anchor in Clay[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [20]
    HAN C C, LIU J, ZHANG Y Q, et al. An innovative booster for dynamic installation of OMNI-Max anchors in clay: physical modeling[J]. Ocean Engineering, 2019, 171: 345-360. doi: 10.1016/j.oceaneng.2018.10.029
    [21]
    HAN C C, ZHANG Y Q, LIU J, et al. Interpreting strength parameters in soft clays from a new free-fall penetrometer[J]. Computers and Geotechnics, 2021, 135: 104157. doi: 10.1016/j.compgeo.2021.104157
    [22]
    LIU Jun, CHEN Xue-jian, HAN Cong-cong, et al. Estimation of intact undrained shear strength of clay using full-flow penetrometers[J]. Computers and Geotechnics, 2019, 115: 103161. doi: 10.1016/j.compgeo.2019.103161
    [23]
    FINNIE I M S, RANDOLPH M F. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments[C]//Proceedings of the International Conference on Behavior of Offshore Structures, 1994.
    [24]
    TIAN Y, GAUDIN C, RANDOLPH M F, et al. Influence of padeye offset on bearing capacity of three-dimensional plate anchors[J]. Canadian Geotechnical Journal, 2015, 52: 682-693. doi: 10.1139/cgj-2014-0120
  • Related Articles

    [1]CAO Xiaolin, ZHOU Fengxi, DAI Guoliang, GONG Weiming. Field tests on dynamic response of pile foundation under excitating loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 171-175. DOI: 10.11779/CJGE2023S10008
    [2]REN Yang, LI Tian-bin, YANG Ling, WEI Da-qiang, TANG Jie-ling. Stability analysis of ultra-high-steep reinforced soil-filled slopes based on centrifugal model tests and numerical calculation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 836-844. DOI: 10.11779/CJGE202205006
    [3]FAN Ke-wei, LIU Si-hong, XU Si-yuan, WANG Jian-lei. Field tests on retaining wall constructed with soilbags filled with clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2341-2348. DOI: 10.11779/CJGE201812024
    [4]CHEN Ren-peng, GU Ming, KONG Ling-gang, ZHANG Zhe-hang, CHEN Yun-min. Large-scale model tests on high-rise platform pile groups under cyclic lateral loads[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 1990-1996.
    [5]ZHU Bin, YANG Yong-yao, YU Zhen-gang, GUO Jie-feng, CHEN Yun-min. Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1028-1037.
    [6]TAO Jing-hui, LIANG Shu-ting, FAN You-wei, ZHANG Yong-le, TAO Mao-zhi. Field tests on high-bearing composite foundation with plain concrete piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 693-700.
    [7]XU Hua, LI Tianbin, ZHOU Xionghua, ZHANG Rubo. Field tests on JYC ecological base material for slope protection in high-cold areas[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 799-804.
    [8]LIU Jianhua, ZHAO Minghua, YANG Minghui. Model tests on bridge pile foundation in high and steep rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 372-377.
    [9]KONG Lingwei, CHEN Jianbin, GUO Aiguo, ZHAO Yanlin, Lv Haibo. Field response tests on expansive soil slopes under atmosphere[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1065-1073.
    [10]GARTUNG Erwin, HENKEN MELLIES Ulrich, RAMKE Hans Gunter, HU Yifeng. Field tests on landfill covers for evaluation of performance of mineral cover systems[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 403-409.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return