• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Tao, DING Wu-xiu, WANG Hong-yi, CHEN Gui-xiang, CHEN Hua-jun, YAN Yong-yan. Dissolution characteristics and mechanical properties of limestone with different mineral composition contents eroded by acid chemical solution[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1550-1557. DOI: 10.11779/CJGE202108021
Citation: MA Tao, DING Wu-xiu, WANG Hong-yi, CHEN Gui-xiang, CHEN Hua-jun, YAN Yong-yan. Dissolution characteristics and mechanical properties of limestone with different mineral composition contents eroded by acid chemical solution[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1550-1557. DOI: 10.11779/CJGE202108021

Dissolution characteristics and mechanical properties of limestone with different mineral composition contents eroded by acid chemical solution

More Information
  • Received Date: January 24, 2021
  • Available Online: December 02, 2022
  • In order to investigate the effects of different mineral composition contents on the dissolution characteristics and strength damage characteristics of limestone, the dissolution kinetics and mechanical tests of limestone and calcite specimens eroded by acidic aqueous chemical solution are carried out to obtain the variation laws of dissolution characteristics and strength damage characteristics of limestone and calcite specimens during the erosion process of acidic aqueous chemical solution. The test results show that: (1) The ion concentration in the chemical solution exhibits an increasing of power function trend with the increase of immersion time, and the dissolution process of limestone and calcite specimens in acidic aqueous chemical solution is divided into acid rock reaction and hydrolysis reaction. (2) In the erosion process of acidic aqueous chemical solution, the acid rock reaction rate of limestone specimens is lower than that of calcite ones, while the hydrolysis reaction rate is higher than that of calcite ones, and finally the limestone dissolution damage degree is greater than that of calcite specimens. (3) The mechanical damage laws of limestone and calcite specimens eroded by acidic chemical solution show a good correlation with their dissolution kinetics behavior. The uniaxial compressive strength of limestone and calcite specimens shows a decreasing trend of power function with the increase of immersion time. The strength damage degree of limestone is lower than that of calcite at the acid rock reaction stage, while the strength damage degree of limestone is higher than that of calcite at the hydrolysis reaction stage.
  • [1]
    宋战平, 程昀, 杨腾添, 等. 渗透压作用对灰岩孔隙结构演化规律影响的试验研究[J]. 岩土力学, 2019, 40(12): 4607-4619, 4463. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912007.htm

    SONG Zhan-ping, CHENG Yun, YANG Teng-tian, et al. Experimental study of the influence of osmotic pressure on pore structure evolution in limestone[J]. Rock and Soil Mechanics, 2019, 40(12): 4607-4619, 4463. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912007.htm
    [2]
    黄波林, 殷跃平, 张枝华, 等. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究[J]. 岩石力学与工程学报, 2019, 38(9): 1786-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm

    HUANG Bo-lin, YIN Yue-ping, ZHANG Zhi-hua, et al. Study on deterioration characteristics of shallow rock mass in water the level fluctuation zone of karst bank slopes in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1786-1796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201909006.htm
    [3]
    PAN Y, WU G, ZHAO Z M, et al. Analysis of rock slope stability under rainfall conditions considering the water-induced weakening of rock[J]. Computers and Geotechnics, 2020, 128: 103806. doi: 10.1016/j.compgeo.2020.103806
    [4]
    LUO S L, JIN X G, HUANG D. Long-term coupled effects of hydrological factors on kinematic responses of a reactivated landslide in the Three Gorges Reservoir[J]. Engineering Geology, 2019, 261: 105271. doi: 10.1016/j.enggeo.2019.105271
    [5]
    WANG J, ZHANG Y, QIN Z, et al. Analysis method of water inrush for tunnels with damaged water-resisting rock mass based on finite element method-smooth particle hydrodynamics coupling[J]. Computers and Geotechnics, 2020, 126: 103725. doi: 10.1016/j.compgeo.2020.103725
    [6]
    李光雷, 蔚立元, 苏海健, 等. 化学腐蚀灰岩SHPB冲击动力学性能研究[J]. 岩石力学与工程学报, 2018, 37(9): 2075-2083. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809007.htm

    LI Guang-lei, WEI Li-yuan, SU Hai-jian, et al. Dynamic properties of corroded limestone based on SHPB[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2075-2083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809007.htm
    [7]
    HYUNSANG Y, YOUNGMIN K, WONSUK L, et al. Dynamic corroded limestone properties of based on SHPE[J]. Journal of Petroleum Ence and Engineering, 2018, 168: 478-494. doi: 10.1016/j.petrol.2018.05.041
    [8]
    FANG X Y, XU J Y, WANG P X. Compressive failure characteristics of yellow sandstone subjected to the coupling effects of chemical corrosion and repeated freezing and thawing[J]. Engineering Geology, 2018, 233: 160-171. doi: 10.1016/j.enggeo.2017.12.014
    [9]
    张站群, 蔚立元, 李光雷, 等. 化学腐蚀后灰岩动态拉伸力学特性试验研究[J]. 岩土工程学报, 2020, 42(6): 1151-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006025.htm

    ZHANG Zhan-qun, YU Li-yuan, LI Guang-lei, et al. Experimental research on dynamic tensile mechanics of limestone after chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1151-1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006025.htm
    [10]
    丁梧秀, 陈建平, 徐桃, 等. 化学溶液侵蚀下灰岩的力学及化学溶解特性研究[J]. 岩土力学, 2015, 36(7): 1825-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507001.htm

    DING Wu-xiu, CHEN Jian-ping, XU Tao, et al. Mechanical and chemical characteristics of limestone during chemical erosion[J]. Rock and Soil Mechanics, 2015, 36(7): 1825-1830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507001.htm
    [11]
    丁梧秀, 徐桃, 王鸿毅, 等. 水化学溶液及冻融耦合作用下灰岩力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(5): 979-985. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505013.htm

    DING Wu-xiu, XU Tao, WANG Hong-yi, et al. Experimental study on mechanical properties of limestone under chemical solution and freezing-thawing process[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5): 979-985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505013.htm
    [12]
    YU L Y, ZHANG Z Q, WU J Y, et al. Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102620. doi: 10.1016/j.tafmec.2020.102620
    [13]
    LI H, ZHONG Z L, LIU X R, et al. Micro-damage evolution and macro-mechanical property degradation of limestone due to chemical effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 257-265. doi: 10.1016/j.ijrmms.2018.07.011
    [14]
    LIN Y, ZHOU K P, GAO R G, et al. Influence of chemical corrosion on pore structure and mechanical properties of sandstone[J]. Geofluids, 2019: 1-15.
    [15]
    ZHANG J, DENG H W, TAHERI A, et al. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion[J]. Cold Regions Science and Technology, 2018, 155: 37-46. doi: 10.1016/j.coldregions.2018.07.007
    [16]
    LI H M, LI H G, WANG K L, et al. Effect of rock composition microstructure and pore characteristics on its rock mechanics properties[J]. International Journal of Mining Science and Technology, 2018, 28(2): 303-308. doi: 10.1016/j.ijmst.2017.12.008
    [17]
    吴永胜, 谭忠盛, 余贤斌, 等. 龙门山北段千枚岩强度及变形特性对比试验研究[J]. 岩土工程学报, 2017, 39(6): 1106-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706022.htm

    WU Yong-sheng, TAN Zhong-sheng, YU Xian-bin, et al. Comparative tests on strength and deformation of phyllite of northern tunnels of Longmen Mountains[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1106-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706022.htm
    [18]
    LI Q, LI J P, DUAN L C, et al. Prediction of rock abrasivity and hardness from mineral composition[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140(2): 104658.
    [19]
    LI M, GUO Y H, WANG H C, et al. Effects of mineral composition on the fracture propagation of tight sandstones in the Zizhou area, east Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103334. doi: 10.1016/j.jngse.2020.103334
    [20]
    ZHANG W Q, LÜ C. Effects of mineral content on limestone properties with exposure to different temperatures[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106941. doi: 10.1016/j.petrol.2020.106941
    [21]
    陈如冰, 罗明明, 罗朝晖, 等. 三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J]. 中国岩溶, 2019, 38(2): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902014.htm

    CHEN Ru-bing, LUO Ming-ming, LUO Zhao-hui, et al. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges area[J]. Carsologica Sinica, 2019, 38(2): 258-264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201902014.htm
    [22]
    LIU Y Q, SUN C, XIONG Y, et al. Kinetics study of surface reaction between acid and sandstone based on the rotation disk instrument[J]. Chemistry and Technology of Fuels and Oils, 2020, 55(6): 765-777. doi: 10.1007/s10553-020-01092-z
    [23]
    MARIENI C, MATTER J M, TEAGLE D A H. Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems[J]. Geochimica et Cosmochimica Acta, 2020, 272: 259-275. doi: 10.1016/j.gca.2020.01.004
    [24]
    IVANISHIN I B, NASR-EL-DIN H A. Effect of calcium content on the dissolution rate of Dolomites in HCl acid[J]. Journal of Petroleum Science and Engineering, 2021, 202: 108463. doi: 10.1016/j.petrol.2021.108463
    [25]
    工程岩体试验方法标准:GB/T 50266—2013[S]. 2013.

    Engineering Rock Mass Test Method Standard: GB/T 50266—2013[S]. 2013. (in Chinese)
    [26]
    王金华, 陈嘉琦. 我国石窟寺保护现状及发展探析[J]. 东南文化, 2018(1): 6-14, 127. doi: 10.3969/j.issn.1001-179X.2018.01.001

    WANG Jin-hua, CHEN Jia-qi. Current stalls and future development of cave temples protection in China[J]. Southeast Culture, 2018(1): 6-14, 127. (in Chinese) doi: 10.3969/j.issn.1001-179X.2018.01.001
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (286) PDF downloads (148) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return