• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
Citation: XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019

Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests

More Information
  • Received Date: December 27, 2020
  • Available Online: December 02, 2022
  • The membrane penetration effects displayed in the coarse-grained soil tests will distort the measurement of volume deformation of samples, thereby affecting the measuring accuracy of strength and deformation index. To this end, by using the same test apparatus, multiple series of isotropic consolidation triaxial tests on the samples of coarse-grained soil with different diameters are implemented. The changing rules of membrane penetration capacity and the related impact factors are analyzed, and an empirical formula is proposed to calculate the membrane penetration capacity of coarse-grained soil. It is shown that the membrane penetration capacity increases with the increase of the confining pressure, and the relationship roughly follows a power function. Under the same confining pressure, with the increase of the sample diameter, the capacity of membrane penetration decreases. The influences of the confining pressure on the membrane penetration capacity are significantly smaller than those of sample size which gradually decreases as the sample diameter increases. Therefore, the strength and deformation tests on coarse-grained soil should be carried out by preparing larger-diameter samples, so that the influences of the membrane penetration effects can be greatly reduced. Due to the great changes in the nature and gradation of coarse-grained parent rock, the existing formulas for the membrane penetration capacity will significantly underestimate the membrane penetration effects of rock-fill samples. It is recommended to use the proposed method to estimate the membrane penetration capacity of coarse-grained soil.
  • [1]
    NEWLAND P L, ALLELY B H. Volume changes in drained taixial tests on granular materials[J]. Géotechnique, 1957, 7(1): 17-34. doi: 10.1680/geot.1957.7.1.17
    [2]
    NEWLAND P L, ALLELY B H. Volume changes during undrained triaxial tests on saturated dilatant granular materials[J]. Géotechnique, 1959, 9(4): 174-182. doi: 10.1680/geot.1959.9.4.174
    [3]
    RAJU V S, VENKATARAMANA K. Undrained triaxial tests to assess liquefaction potential of sands: effect of membrane penetration[C]//Proc Int Symp on Soils under Cyclic and Transient Loading Swansea, 1980, Wales.
    [4]
    KIEKBUSCH M, SCHUPPENER B. Membrane penetration and its effects on pore pressures[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1267-1280. doi: 10.1061/AJGEB6.0000519
    [5]
    EVANS M D. Density changes during undrained loading-membrane compliance[J]. Journal of Geotechnical Engineering, 1992, 118(12): 1924-1936 doi: 10.1061/(ASCE)0733-9410(1992)118:12(1924)
    [6]
    SUTTS L D, SHEAHAN T C, TSOI W Y, et al. Membrane penetration remedy for the testing of lightly cemented scrap rubber tire Chips[J]. Geotechnical Testing Journal, 2009, 32(1): 55-63.
    [7]
    KNODEL P C, CHOI J W, ISHIBASHI I. An experimental method for determining membrane penetration[J]. Geotechnical Testing Journal, 1992, 15(4): 413-417. doi: 10.1520/GTJ10258J
    [8]
    LADE P V, HERNANDEZ S B. Membrane penetration effects in undrained tests[J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 109-125. doi: 10.1061/AJGEB6.0000377
    [9]
    RAGHUNANDAN M E, SHARMA J S, PRADHAN B. A review on the effect of rubber membrane in triaxial tests[J]. Arabian Journal of Geosciences, 2015, 8(5): 3195-3206. doi: 10.1007/s12517-014-1420-0
    [10]
    KRAMER S L, SIVANESWARAN N. Stress-path-dependent correction for membrane penetration[J]. Journal of Geotechnical Engineering, 1989, 115(12): 1787-1804. doi: 10.1061/(ASCE)0733-9410(1989)115:12(1787)
    [11]
    SIVATHAYALAN S, VAID Y P. Truly undrained response of granular soils with no membrane-penetration effects[J]. Canadian Geotechnical Journal, 1998, 35(5): 730-739. doi: 10.1139/t98-048
    [12]
    RAMANA K V, RAJU V S. Constant-volume triaxial tests to study the effects of membrane penetration[J]. Geotechnical Testing Journal, 1981, 4(3): 117-122. doi: 10.1520/GTJ10777J
    [13]
    TOKIMATSU K, NAKAMURA K. A Liquefaction test without membrane penetration effects[J]. Soils and Foundations, 1986, 26(4): 127-138. doi: 10.3208/sandf1972.26.4_127
    [14]
    NICHOLSON P G, SEED R B, ANWAR H A. Elimination of membrane compliance in undrained triaxial testing II. Mitigation by injection compensation[J]. Canadian Geotechnical Journal, 1993, 30(5): 739-746. doi: 10.1139/t93-066
    [15]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. An evaluation of test data for selecting a yield criterion for soils[M]//Laboratory Shear Testing of Soil, West Conshohocken: ASTM International, 1964: 111-128.
    [16]
    EL-SOHBY M A, ANDRAWES K Z. Deformation characteristics of granular materials under hydrostatic compression[J]. Canadian Geotechnical Journal, 1972, 9(4): 338-350. doi: 10.1139/t72-038
    [17]
    RAJU V S, SADASIVAN S K. Membrane penetration in triaxial tests on sands[J]. Journal of the Geotechnical Engineering Division, 1974, 100(4): 482-489. doi: 10.1061/AJGEB6.0000042
    [18]
    BOPP P A, LADE P V. Membrane penetration in granular materials at high pressures[J]. Geotechnical Testing Journal, 1997, 20(3): 272-278.
    [19]
    吉恩跃, 朱俊高, 王青龙, 等. 粗颗粒土橡皮膜嵌入试验研究[J]. 岩土工程学报, 2018, 40(2): 346-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802021.htm

    JI En-yue, ZHU Jun-gao, WANG Qing-long, et al. Experiment of membrane penetration on coarse grained soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 346-352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802021.htm
    [20]
    ETRIS S F, LIRB K C, SISCAV K, et al. The membrane effect in triaxial testing of granular soils[J]. Journal of Testing and Evaluation, 1973, 1(1): 37-41. doi: 10.1520/JTE11599J
    [21]
    VAID Y P, NEGUSSEY D. A critical assessment of membrane penetration in the triaxial test[J]. Geotechnical Testing Journal, 1984, 7(2): 70-76. doi: 10.1520/GTJ10595J
    [22]
    吉恩跃, 陈生水, 傅中志, 等. 直接测量三轴试验橡皮膜嵌入量的装置及其测量方法: CN109060543B[P]. 2018-12-21.

    JI En-yue, CHEN Sheng-shui, FU Zhong-zhi, et al. Device for Directly Measuring Embedding Amount of Triaxial Rubber Membrance and Measuring Method Thereof: CN109060543B[P]. 2018-12-21. (in Chinese)
    [23]
    龚选. 粗粒土强度特性及三轴试验橡皮膜影响的研究[D]. 南京: 河海大学, 2014.

    GONG Xuan. Test Study on Effects of Rubber Membrane Constraint in Triaxial Test and Strength Characteristics of Coarse-Grained Soil[D]. Nanjing: Hohai University, 2014. (in Chinese)
    [24]
    张丙印, 吕明治, 高莲士. 粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正[J]. 水利水电技术, 2003, 34(2): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200302010.htm

    ZHANG Bing-yin, LÜ Ming-zhi, GAO Lian-shi. Correction of membrane penetration in large-scale triaxial tests for granular materials[J]. Water Resources and Hydropower Engineering, 2003, 34(2): 30-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200302010.htm
    [25]
    MOLENKAMP F, LUGER H J. Modelling and minimization of membrane penetration effects in tests on granular soils[J]. Géotechnique, 1981, 31(4): 471-486. doi: 10.1680/geot.1981.31.4.471
    [26]
    BALDI G, NOVA R. Membrane penetration effects in triaxial testing[J]. Journal of Geotechnical Engineering, 1984, 110(3): 403-420. doi: 10.1061/(ASCE)0733-9410(1984)110:3(403)
    [27]
    刘荟达, 袁晓铭, 王鸾, 等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报, 2020, 39(4): 804-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004014.htm

    LIU Hui-da, YUAN Xiao-ming, WANG Luan, et al. A new calculation method for membrane penetration in wide-graded gravelly soils[J]. Chinese Journal of Rock Mechanics Engineering, 2020, 39(4): 804-816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004014.htm
  • Related Articles

    [1]HAN Lei, YE Guan-lin, WANG Jian-hua, YANG Guang-hui, ZHOU Song. Finite element analysis of impact of under-crossing of large shallow shield tunnel on riverbank[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 125-128. DOI: 10.11779/CJGE2015S1025
    [2]HAN Jin-bao, XIONG Ju-hua, SUN Qing, YANG Min. Multi-factor three-dimensional finite element analysis of effects of tunnel construction on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 339-344.
    [3]XU Wen-qiang, YUAN Fan-fan, WEI Chang-fu, YANG Cao-shuai. Bearing capacity of suction tapered bucket foundations based on three-dimensional finite element numerical analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 485-490.
    [4]WANG Yuanzhan, XIAO Zhong, LI Yuanyin, XIE Shanwen. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627.
    [5]HAN Bing, CAO Pinlu. Finite element analysis of interaction between soils and impact sampling bits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1560-1563.
    [6]JIANG Xinliang, ZONG Jinhui. Three-dimensional finite element analysis of seepage fields in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 564-568.
    [7]HUANG Yu, YASHIMA Atsushi, ZHANG Feng. Finite element analysis of pile-soil-structure dynamic interaction in liquefiable site[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 646-651.
    [8]XING Haofeng, GONG Xiaonan, YANG Xiaojun. Simplified analysis for consolidation of gravel-pile composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 521-524.
    [9]LU Xinzheng, SONG Erxiang, JI Lin, SUI Feng. 3-Dimensional FEA for the interaction between supporting structure of excavation and soil in a very deep pit[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 488-491.
    [10]Yu Zehong, Zhang Qisen. Finite Element Analysis for Mechanism of Geonets-Soil Interaction[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 79-85.
  • Cited by

    Periodical cited type(2)

    1. 温志辉,郭树乾,魏建平,张铁岗,王建伟,张立博,任永婕. 低频振动激励煤体共振增渗实验系统研制及应用. 煤田地质与勘探. 2024(09): 31-40 .
    2. 王雷鸣,李硕,尹升华,成亮,张超,陈威,薛森淼. 深地砂岩铀矿溶浸开采体系孔裂-渗流透明表征与定向干预研究进展. 绿色矿山. 2024(04): 381-396 .

    Other cited types(2)

Catalog

    Article views (215) PDF downloads (117) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return