• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yong, LI Xi-qi, LIU Jun. Effect of low-frequency vibration on porosity of low-permeability sandstone samples during uranium leaching process[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1526-1535. DOI: 10.11779/CJGE202108018
Citation: ZHAO Yong, LI Xi-qi, LIU Jun. Effect of low-frequency vibration on porosity of low-permeability sandstone samples during uranium leaching process[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1526-1535. DOI: 10.11779/CJGE202108018

Effect of low-frequency vibration on porosity of low-permeability sandstone samples during uranium leaching process

More Information
  • Received Date: September 07, 2020
  • Available Online: December 02, 2022
  • To improve the permeability of low-permeability sandstone, low-frequency vibration is introduced into the process of uranium leaching by CO2+O2, and the researches on the permeability and porosity under the effect of vibration are carried out. The porosity equation and permeability expression considering the vibration-induced damage under the combined effects of chemical erosion and physical mechanical vibration are established. The vibration leaching experiments on the low-permeability sandstone samples are performed by using the developed vibration leaching experimental system to test the correctness of the equations and to study the effect characteristics of vibration on the permeability. The results indicate that the low-frequency vibration increases the porosity of the low-permeability sandstone samples, and significantly improves the permeability. The increment value of permeability is up to 3.265 md, which is increased by 6.34 times more than that without the vibration. The variation rules of the experimental and calculated values of permeability increment and the calculated values of porosity are the same. In addition, the variation ranges of the calculated and experimental values of permeability increment are basically consistent. The vibration can result in damage to the samples, thus the porosity increases and the permeability is improved effectively. Therefore, the equations can correctly reflect the variation rules of porosity and permeability of sandstone samples under the action of different vibration frequencies and vibration time as well as the variation ranges of permeability. It may provide a theoretical basis for the in-situ leaching of low-permeability sandstone by CO2+O2.
  • [1]
    苏学斌, 杜志明. 我国地浸采铀工艺技术发展现状与展望[J]. 中国矿业, 2012, 21(9): 79-83. doi: 10.3969/j.issn.1004-4051.2012.09.021

    SU Xue-bin, DU Zhi-ming. Development and prospect of China Uranium in-situ leaching technology[J]. China Mining Magazine, 2012, 21(9): 79-83. (in Chinese) doi: 10.3969/j.issn.1004-4051.2012.09.021
    [2]
    王伟, 李小春, 袁维, 等. 低渗透砂岩型铀矿床爆破增渗模型试验及增渗机制研究[J]. 岩石力学与工程学报, 2016, 35(8): 1609-1617. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608009.htm

    WANG Wei, LI Xiao-chun, YUAN Wei, et al. Model test and mechanism study of the blasting-enhanced permeability of sandstone-type uranium deposits of low-permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(8): 1609-1617. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201608009.htm
    [3]
    CAI G L, TAN K X, WANG W G. Effect of different surfactant on leaching of uranium in sandstone type ores with low permeability[J]. Advanced Materials Research, 2013, 2203(634): 3335-3338.
    [4]
    HOU B F, WANG Y F, HUANG Y. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants[J]. Applied Surface Science, 2015, 330: 56-64. doi: 10.1016/j.apsusc.2014.12.185
    [5]
    LIU J, LIU Z G, XUE J H, et al. Application of deep borehole blasting on fully mechanized hard top-coal pre-splitting and gas extraction in the special thick seam[J]. International Journal of Mining Science and Technology, 2015, 25(5): 755-760. doi: 10.1016/j.ijmst.2015.07.009
    [6]
    SHADAB F M, WANG Y. Probabilistic analysis of crushed zone for rock blasting[J]. Computers and Geotechnics, 2016, 80: 290-300. doi: 10.1016/j.compgeo.2016.08.025
    [7]
    ZHU W C, GAI D, WEI C H, et al. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1253-1263. doi: 10.1016/j.jngse.2016.03.047
    [8]
    ZHANG L B, GUO W Q, PENG J H, et al. Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy[J]. Ultrasonics Sonochemistry, 2016, 31: 143-149. doi: 10.1016/j.ultsonch.2015.12.006
    [9]
    ZHANG J, WU A X, WANG Y M, et al. Experimental research in leaching of copper-bearing tailings enhanced by ultrasonic treatment[J]. Journal of China University of Mining and Technology, 2008, 18(1): 98-102. doi: 10.1016/S1006-1266(08)60021-8
    [10]
    XUE J Q, LU X, DU Y W, et al. Ultrasonic-assisted oxidation leaching of nickel sulfide concentrate[J]. Chinese Journal of Chemical Engineering, 2010, 18(6): 948-953. doi: 10.1016/S1004-9541(09)60152-X
    [11]
    GUO P, WANG S X, ZHANG L B. Selective removal of antimony from refractory gold ores by ultrasound[J]. Hydrometallurgy, 2019, 190: 105161. doi: 10.1016/j.hydromet.2019.105161
    [12]
    LI H Y, LI S W, SRINIVASAKANNAN C, et al. Efficient cleaning extraction of silver from spent symbiosis lead-zinc mine assisted by ultrasound in sodium thiosulfate system[J]. Ultrasonics Sonochemistry, 2018, 49: 118-127. doi: 10.1016/j.ultsonch.2018.07.034
    [13]
    YIN S H, PEI J N, JIANG F, et al. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution[J]. Ultrasonics Sonochemistry, 2018, 41: 156-162. doi: 10.1016/j.ultsonch.2017.09.028
    [14]
    LI S W, CHEN W H, YIN S H, et al. Impacts of ultrasound on leaching recovery of zinc from low grade zinc oxide ore[J]. Green Processing and Synthesis, 2015, 4(4): 323-328.
    [15]
    AVVARU B, ROY S B, CHOWDHURY S, et al. Enhancement of the leaching rate of uranium in the presence of ultrasound[J]. Industrial & Engineering Chemistry Research, 2006, 45(22): 7639-7648.
    [16]
    LADOLA Y S, CHOWDHURY S, ROY S B, et al. Application of cavitation in uranium leaching[J]. Desalination and Water Treatment, 2014, 52(1/2/3): 407-414.
    [17]
    MAKARYUK N V. Seismic vibration treatment of a pay zone for improvement of the filtration and production parameters of underground metal leaching[J]. Journal of Mining Science, 2009, 45(6): 590-601. doi: 10.1007/s10913-009-0074-x
    [18]
    KASSAB M A, WELLER A. Porosity estimation from compressional wave velocity: a study based on Egyptian sandstone formations[J]. Journal of Petroleum Science and Engineering, 2011, 78, 310-315. doi: 10.1016/j.petrol.2011.06.011
    [19]
    陶云奇, 许江, 彭守建, 等. 含瓦斯煤孔隙率和有效应力影响因素试验研究[J]. 岩土力学, 2010, 31(11): 3417-3422. doi: 10.3969/j.issn.1000-7598.2010.11.010

    TAO Yun-qi, XU Jiang, PENG Shou-jian, et al. Experimental study of influencing factor of porosity and effective stress of gas-filled coal[J]. Rock and Soil Mechanics, 2010, 31(11): 3417-3422. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.11.010
    [20]
    魏宁, 李小春, 王颖, 等. 岩石流体反应-流动耦合试验装置的开发[J]. 岩石力学与工程学报, 2008, 27(7): 1499-1504. doi: 10.3321/j.issn:1000-6915.2008.07.026

    WEI Ning, LI Xiao-chun, WANG Ying, et al. Development of rock-fluid reaction-flow coupling testing apparatus[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1499-1504. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.07.026
    [21]
    杜超超, 周义朋. CO2+O2地浸采铀矿层渗透性影响因素[J]. 有色金属(冶炼部分), 2019(7): 48-53. doi: 10.3969/j.issn.1007-7545.2019.07.010

    DU Chao-chao, ZHOU Yi-peng. Influence factors on permeability of ore Layer in uranium CO2+O2 in-situ leaching[J]. Nonferrous Metals (Extractive Metallurgy), 2019(7): 48-53. (in Chinese) doi: 10.3969/j.issn.1007-7545.2019.07.010
    [22]
    王艳磊, 唐建新, 江君, 等. 水岩化学作用下灰砂岩的力学特性与参数损伤效应[J]. 煤炭学报, 2017, 42(1): 227-235. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701031.htm

    WANG Yan-lei, TANG Jian-xin, JIANG Jun, et. al. Mechanical properties and parameter damage effect of malmstone under chemical corrosion of water-rock interaction[J]. Journal of China Coal Society, 2017, 42(1): 227-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701031.htm
    [23]
    邓华锋, 李建林, 王孔伟, 等.饱和-风干循环过程中砂岩次生孔隙率变化规律研究[J]. 岩土力学, 2012, 33(2): 483-488. doi: 10.3969/j.issn.1000-7598.2012.02.026

    DENG Hua-feng, LI Jian-lin, WANG Kong-wei, et al. Research on secondary porosity changing law of sandstone under saturation-air dry cycles[J]. Rock and Soil Mechanics, 2012, 33(2): 483-488. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.02.026
    [24]
    杨威, 李磊, 马立强. 振动放顶煤技术研究[C]//煤炭开采新理论与新技术——中国煤炭学会开采专业委员会2007年学术年会论文集. 2007: 69-72.

    YANG Wei, LI Lei, MA Li-qiang. Experimental research of top coal dropping vibration technology[C]//The New Theory and Technology of Coal Mining-Annual Meeting Symposium of Mining Professional Committee of China Coal Society in 2007. 2007: 69-72. (in Chinese)
    [25]
    崔新壮, 李卫民, 段祝平, 等. 爆炸应力波在各向同性损伤岩石中的衰减规律研究[J]. 爆炸与冲击, 2001, 21(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200101015.htm

    CUI Xin-zhuang, LI Wei-min, DUAN Zhu-ping, et al. Stress wave attenuation in isotropic damaged rocks[J]. Explosion and Shock Waves, 2001, 21(1): 76-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200101015.htm
    [26]
    MIAO Y C, LIU C W, HE Z L, et al. Analysis of dynamic damage-induced porosity changes of granites in leaching mining technique based on SHPB test[J]. Geofluids, 2020: 1-12.
    [27]
    HE H J, AHRENS T J. Mechanical properties of shock-damaged rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 1994, 31(5): 525-533.
    [28]
    李和万, 王来贵, 张豪, 等. 循环冷加载条件下受载煤样结构损伤规律[J]. 煤炭学报, 2017, 42(9): 2345-2352. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709018.htm

    LI He-wan, WANG Lai-gui, ZHANG Hao, et al. Investigation on damage laws of loading coal samples under cyclic cooling treatment[J]. Journal of China Coal Society, 2017, 42(9): 2345-2352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201709018.htm
    [29]
    ZENG Y Q, LI H B, XIA X, et al. Blast-induced rock damage control in fangchenggang nuclear power station, China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(5): 914-923. doi: 10.1016/j.jrmge.2018.04.010
    [30]
    崔新壮, 金青, 李卫民, 等. 含初始损伤的水泥砂浆材料的动态本构关系研究[J]. 工程爆破, 2001, 7(2): 1-4, 49. doi: 10.3969/j.issn.1006-7051.2001.02.001

    CUI Xin-zhuang, JIN Qing, LI Wei-min, et al. Research to dynamic constitutive relation of cement mortar with initial damage[J]. Engineering Blasting, 2001, 7(2): 1-4, 49. (in Chinese) doi: 10.3969/j.issn.1006-7051.2001.02.001
    [31]
    LI B, LIANG Y P, ZHANG L, et al. Experimental investigation on compaction characteristics and permeability evolution of broken coal[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 118: 63-76. doi: 10.1016/j.ijrmms.2019.04.001
    [32]
    CARLOS C F J, OELKERS E H, SCHOTT J. Experimental investigation of the effect of dissolution on sandstone permeability, porosity, and reactive surface area[J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 805-817.

Catalog

    Article views (248) PDF downloads (157) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return