• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016
Citation: WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016

Evolution of critical state of calcareous sand during particle breakage

More Information
  • Received Date: June 26, 2020
  • Available Online: December 02, 2022
  • Based on the particle breakage characteristics and development laws of calcareous sand from physical triaxial test results, a discrete element numerical model is established for conducting numerical triaxial tests. First, the specimens with different initial gradings are generated by pre-crushing a uniformly graded calcareous sand under different pressures, and the numerical tests without breakage during the following triaxial shear process are carried out to determine the relationship between the critical state and the fixed grading. The results show that the fixed grading has a fixed critical state line, and the critical state lines of different gradings are basically parallel, but their position decreases gradually with the broader grading (i.e., the increasing breakage) in the e-p compression plane. Afterwards, the numerical tests of crushable particles during loading process are conducted on the specimens with the same uniform grading so as to reveal the evolution mechanism of the critical state during real triaxial tests on crushable soils. The results show that in the three-dimensional e-p-Br space, the points of the critical state from the crushable tests fall on the surface of the breakage critical state determined by the fixed critical state lines from the non-crushable tests, indicating that the critical state depends only on the final grading regardless of the intermediate process to achieve the final grading. In real physical tests, the particle breakage extent of the points at the measured critical state line is different, and thus the critical state line exhibits complicated nonlinear form. Under triaxial compression conditions, the particle breakage increases with the increasing mean effective stress, leading to the rotation of the measured critical state line.
  • [1]
    ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53. doi: 10.1680/geot.1958.8.1.22
    [2]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
    [3]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
    [4]
    VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91. doi: 10.3208/sandf.36.2_81
    [5]
    CAI Zheng-yin, LI Xiang-song, Deformation characteristics and critical state of sand[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 697-701. doi: 10.3321/j.issn:1000-4548.2004.05.025
    [6]
    MUIR WOOD D, MAEDA K, NUKUDANI E. Modelling mechanical consequences of erosion[J]. Géotechnique, 2010, 60(6): 447-457. doi: 10.1680/geot.2010.60.6.447
    [7]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
    [8]
    陆勇, 周国庆, 顾欢达. 高低压下不同力学特性的砂土统一模型[J]. 岩土力学, 2018, 39(2): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802027.htm

    LU Yong, ZHOU Guo-qing, GU Huan-da. Unified model of sand with different mechanical characteristics under high and low pressures[J]. Rock and Soil Mechanics, 2018, 39(2): 614-620. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802027.htm
    [9]
    BIAREZ J, HICHER P Y. Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils[M]. Rotterdam: AA Balkema, 1994.
    [10]
    BANDINI V, COOP M R. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
    [11]
    XIAO Y, LIU H, DING X, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 4015031. doi: 10.1061/(ASCE)GM.1943-5622.0000538
    [12]
    WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2007, 3(1): 3-14.
    [13]
    YAN W M, DONG J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285. doi: 10.1061/(ASCE)GM.1943-5622.0000085
    [14]
    HANLEY K J, O’SULLIVAN C, HUANG X. Particle-scale mechanics of sand crushing in compression and shearing using DEM[J]. Soils and Foundations, 2015, 55(5): 1100-1112. doi: 10.1016/j.sandf.2015.09.011
    [15]
    CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15. doi: 10.1680/jgeot.17.P.023
    [16]
    金磊, 曾亚武, 李欢, 等. 基于不规则颗粒离散元的土石混合体大三轴数值模拟[J]. 岩土工程学报, 2015, 37(5): 829-838. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm

    JIN Lei, ZENG Ya-wu, LI Huan, et al. Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 829-838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505010.htm
    [17]
    韩洪兴, 陈伟, 邱子锋, 等. 考虑破碎的堆石料二维颗粒流数值模拟[J]. 岩土工程学报, 2016, 38(增刊2): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2038.htm

    HAN Hong-xing, CHEN Wei, QIU Zi-feng, et al. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 234-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2038.htm
    [18]
    周健, 张艳伟, 周韵鸿, 等. 考虑粒间法向接触力作用的粗粒土颗粒破碎试验研究[J]. 岩土工程学报, 2018, 40(7): 1163-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807002.htm

    ZHOU Jian, ZHANG Yan-wei, ZHOU Yun-hong, et al. Experimental study on particle breakage of coarse-grained soil considering normal contact force[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1163-1170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201807002.htm
    [19]
    周伦伦, 楚锡华, 徐远杰. 基于离散元法的真三轴应力状态下砂土破碎行为研究[J]. 岩土工程学报, 2017, 39(5): 839-847. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705011.htm

    ZHOU Lun-lun, CHU Xi-hua, XU Yuan-jie. Breakage behavior of sand under true triaxial stress based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 839-847. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705011.htm
    [20]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. doi: 10.3969/j.issn.1000-7598.2008.10.037

    ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.10.037
    [21]
    GUYON É, TROADEC J P. From a bag of marbles to a pile of sand[M]. Paris: Odile Jacob Publishing, 1994. (in France)
    [22]
    吴京平, 褚瑶, 楼志刚. 颗粒破碎对钙质砂变形及强度特性的影响[J]. 岩土工程学报, 1997, 19(5): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC705.007.htm

    WU Jing-ping, CHU Yao, LOU Zhi-gang. Influence of particle breakage on deformation and strength properties of calcareous sands[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 51-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC705.007.htm
    [23]
    WANG G, WANG Z N, YE Q G, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 4020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601
    [24]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
    [25]
    ŠMILAUER V, CATALANO E, CHAREYRE B, et al. Yade Documentation[EB/OL]. https://yade-dem.org/doc/, 2013-10-17.
    [26]
    HARDIN B O, ASCE F. Crushing of soil particles[J]. Journal of Geotechnical Engineering ASCE, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [27]
    LI X S, WANG Y. Linear Representation of Steady-State Line for Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
    [28]
    WANG Z N, WANG G, YE Q G. A constitutive model for crushable sands involving compression and shear induced particle breakage[J]. Computers and Geotechnics, 2020, 126: 103757. doi: 10.1016/j.compgeo.2020.103757

Catalog

    Article views (290) PDF downloads (217) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return