• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Deng-fei, CHEN Cun-li, SHU Ying-tao, PANG Teng-teng. Correlation between structure of intact loess and gas permeability[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1345-1351. DOI: 10.11779/CJGE202107021
Citation: ZHANG Deng-fei, CHEN Cun-li, SHU Ying-tao, PANG Teng-teng. Correlation between structure of intact loess and gas permeability[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1345-1351. DOI: 10.11779/CJGE202107021

Correlation between structure of intact loess and gas permeability

More Information
  • Received Date: October 25, 2020
  • Available Online: December 02, 2022
  • The isotropic compression tests with simultaneous gas permeability measurements are performed for intact loess with various water contents in three regions. The behaviours of compression deformation and change of induced gas permeability of intact loess are analyzed. The correlation between gas permeability and compression deformation is discussed. The formula of compression curve of intact loess is proposed to characterize the compressive deformation under the coupling of moisture and stress, in which the structural parameter defined by gas permeability is included as a known parameter. The results suggest that changes of gas permeability of intact loess are found to have a good correlation with volumetric deformation during isotropic compression tests. The structural potential difference of intact loess caused by the fabric and moisture and its damage induced by the stress can be reflected by the change in gas permeability. The gas permeability ratio corresponding to the yield stress at the ratio of a certain water content to the reference water content is defined as the structureal ratio parameter, and it is introduced into the isotropic stress variable to lead to a normalized compression curve of intact loess with various water contents. Regarding the compression curve at the reference water content as the reference state, a unified and continued description of the compression deformation before and after yielding for unsaturated intact loess is proposed, and the calculated results agree well with the test ones.
  • [1]
    沈珠江. 土体结构性的数学模型——21 世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95-97. doi: 10.3321/j.issn:1000-4548.1996.01.015

    SHEN Zhu-jiang. Mathematical model for soil structure—The core topic of soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95-97. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015
    [2]
    谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. doi: 10.3321/j.issn:1000-4548.1999.06.003

    XIE Ding-yi, Qi Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.06.003
    [3]
    JIANG M J, ZHANG F F, HU H J, et al. Structural characterization of natural loess and remolded loess under triaxial tests[J]. Engineering Geology, 2014, 181: 249-260. doi: 10.1016/j.enggeo.2014.07.021
    [4]
    高国瑞. 黄土湿陷变形的结构理论[J]. 岩土工程学报, 1990, 12(4): 1-10. doi: 10.3321/j.issn:1000-4548.1990.04.001

    GAO Guo-rui. A structure theory for collapsing deformation loess soils[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(4): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1990.04.001
    [5]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑), 1987, 17(12): 1309-1318. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm

    LEI Xiang-yi. Classification of micro-structure and collapsibility of the loess[J]. Scientia Sinica, 1980, 17(12): 1309-1318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198712008.htm
    [6]
    WANG J D, LI P, MA Y, et al. Change in pore-size distribution of collapsible loess due to loading and inundating[J]. Acta Geotechnica, 2020, 15(5): 1081-1094. doi: 10.1007/s11440-019-00815-9
    [7]
    沈珠江, 胡再强. 黄土的二元介质模型[J]. 水利学报, 2003, 34(7): 1-6. doi: 10.3321/j.issn:0559-9350.2003.07.001

    SHEN Zhu-jiang, HU Zai-qiang. Binary medium model for loess[J]. Journal of Hydraulic Engineering, 2003, 34(7): 1-6. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.07.001
    [8]
    李宏儒, 胡再强, 赵凯, 等. 结构性土二元介质本构模型及破损率影响因素的研究[J]. 岩土力学, 2012, 33(增刊1): 67-72. doi: 10.16285/j.rsm.2012.s1.014

    LI Hong-ru, HU Zai-qiang, ZHAO Kai, et al. Structural soil binary-medium constitutive model and factor of breakage ratio influence[J]. Rock and Soil Mechanics, 2012, 33(S1): 67-72. (in Chinese) doi: 10.16285/j.rsm.2012.s1.014
    [9]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm

    CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm
    [10]
    邵帅, 褚峰, 邵生俊. Q3结构性黄土的扰动状态本构模型试验研究[J]. 岩石力学与工程学报, 2016, 35(7): 1494-1500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607020.htm

    SHAO Shuai, CHU Feng, SHAO Sheng-jun. Experimental study on constitutive model of structural Q3 loess based on disturbed state concept[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1494-1500. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607020.htm
    [11]
    姚志华, 连杰, 陈正汉, 等. 考虑细观结构演化的非饱和Q3原状黄土弹塑性本构模型[J]. 岩土力学, 2018, 39(5): 1553-1563. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805002.htm

    YAO Zhi-hua, LIAN Jie, CHEN Zheng-han, et al. An elastic plastic constitutive model for unsaturated Q3 undisturbed loess considering meso-structured evolution[J]. Rock and Soil Mechanics, 2018, 39(5): 1553-1563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805002.htm
    [12]
    邵生俊, 周飞飞, 龙吉勇. 原状黄土结构性及其定量化参数研究[J]. 岩土工程学报, 2004, 26(4): 531-536. doi: 10.3321/j.issn:1000-4548.2004.04.021

    SHAO Sheng-jun, ZHOU Fei-fei, LONG Ji-yong. Structural properties of loess and its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 531-536. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.021
    [13]
    骆亚生, 谢定义, 邵生俊, 等. 复杂应力状态下的土结构性参数[J]. 岩石力学与工程学报, 2004, 23(24): 4248-4251. doi: 10.3321/j.issn:1000-6915.2004.24.027

    LUO Ya-sheng, XIE Ding-yi, SHAO Sheng-jun, et al. Structural parameter of soil under complex stress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4248-4251. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.24.027
    [14]
    陈存礼, 高鹏, 胡再强. 黄土的增湿变形特性及其与结构性的关系[J]. 岩石力学与工程学报, 2006, 25(7): 1352-1360. doi: 10.3321/j.issn:1000-6915.2006.07.009

    CHEN Cun-li, GAO Peng, HU Zai-qiang. Moistening deformation characteristic of loess and its relation to structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1352-1360. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.07.009
    [15]
    冯志焱. 非饱和黄土的结构性定量化参数与结构性本构关系研究[D]. 西安: 西安理工大学, 2008.

    FENG Zhi-yan. Research on Soil Structural Parameters and Structural Constitutive Model of Unsaturated Loess[D]. Xi'an: Xi'an University of Technology, 2008. (in Chinese)
    [16]
    刘奉银, 张昭, 周冬. 湿度和密度双变化条件下的非饱和黄土渗气渗水函数[J]. 岩石力学与工程学报, 2010, 29(9): 1907-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009022.htm

    LIU Feng-yin, ZHANG Zhao, ZHOU Dong. Density-saturation-dependent air-water permeability function of unsaturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1907-1914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009022.htm
    [17]
    CHEN C L, ZHANG D F, ZHANG J. Influence of stress and water content on air permeability of intact loess[J]. Canadian Geotechnical Journal, 2017, 54(9): 1221-1230. doi: 10.1139/cgj-2016-0186
    [18]
    PICCOLI I, SCHJØNNING P, LAMANDÉ M, et al. Coupling gas transport measurements and X-ray tomography scans for multiscale analysis in silty soils[J]. Geoderma, 2019, 338(3): 576-584.
    [19]
    ZHAI X F, HORN R. Dynamics of pore functions and gas transport parameters in artificially ameliorated soils due to static and cyclic loading[J]. Geoderma, 2019, 337(3): 300-310.
    [20]
    姚志华, 陈正汉, 黄雪峰, 等. 非饱和Q3黄土渗气特性试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1264-1273. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206024.htm

    YAO Zhi-hua, CHEN Zheng-han, HUANG Xue-feng, et al. Experimental research on gas permeability of unsaturated Q3 loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1264-1273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201206024.htm
    [21]
    ZHAN T L T, YANG Y B, CHEN R, et al. Influence of clod size and water content on gas permeability of a compacted loess[J]. Canadian Geotechnical Journal, 2014, 51(12): 1468-1474. doi: 10.1139/cgj-2014-0126
    [22]
    BERISSO F E, SCHJONNING P, KELLER T, et al. Gas transport and subsoil pore characteristics: anisotropy and long-term effects of compaction[J]. Geoderma, 2013, 195/196: 184-191.
    [23]
    袁俊平, 张锋, 王启贵, 等. 裂隙对压实膨胀土渗气性影响试验[J]. 水利水电科技进展, 2014, 34(3): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201403009.htm

    YUAN Jun-ping, ZHANG Feng, WANG Qi-gui, et al. The influences of fissure on gas permeability of the compacted expansive soil[J]. Advances in Science and Technology of Water Resources, 2014, 34(3): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201403009.htm
    [24]
    NGUYEN V, PINEDA J A, ROMERO E, et al. Influence of soil microstructure on air permeability in compacted clay[J]. Géotechnique, 2021, 71(5): 373-391.
    [25]
    李喜安, 刘锦阳, 郭泽泽, 等. 马兰黄土孔隙结构参数与渗透性关系研究[J]. 工程地质学报, 2018, 26(6): 1415-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806002.htm

    LI Xi-an, LIU Jin-yang, GUO Ze-ze, et al. Study on relationship between pore structure parameters and permeability of malan loess[J]. Journal of Engineering Geology, 2018, 26(6): 1415-1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201806002.htm
    [26]
    陈存礼, 张登飞, 张洁, 等. 等向应力条件下原状Q3黄土的渗气特性研究[J]. 岩土工程学报, 2017, 39(2): 287-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702015.htm

    CHEN Cun-li, ZHANG Deng-fei, ZHANG Jie, et al. Gas permeability of intact Q3 loess under isotropic stresses[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 287-294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702015.htm
    [27]
    陈存礼, 曹程明, 王晋婷, 等. 湿载耦合条件下结构性黄土的压缩变形模式研究[J]. 岩土力学, 2010, 31(1): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001008.htm

    CHEN Cun-li, CAO Cheng-ming, WANG Jin-ting, et al. Modeling compression of structural loess under coupling of stress and moisture[J]. Rock and Soil Mechanics, 2010, 31(1): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001008.htm
    [28]
    LIU Z B, XIE S Y, SHAO J F, et al. Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock[J]. Géotechnique, 2018, 68(4): 281-289.
    [29]
    尹振宇. 天然软黏土的弹黏塑性本构模型:进展及发展[J]. 岩土工程学报, 2011, 33(9): 1357-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109011.htm

    YIN Zhen-yu. Elastic viscoplastic models for natural soft clay: review and development, 2011, 33(9): 1357-1369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109011.htm
    [30]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612004.htm

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612004.htm

Catalog

    Article views (221) PDF downloads (115) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return