• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Qiang-qiang, XU Ying, HU Hao, QIAN Jia-wei, ZONG Qi, XIE Ping. Fracture and tomography of velocity structures of sandstone under uniaxial loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1069-1077. DOI: 10.11779/CJGE202106010
Citation: ZHENG Qiang-qiang, XU Ying, HU Hao, QIAN Jia-wei, ZONG Qi, XIE Ping. Fracture and tomography of velocity structures of sandstone under uniaxial loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1069-1077. DOI: 10.11779/CJGE202106010

Fracture and tomography of velocity structures of sandstone under uniaxial loads

More Information
  • Received Date: July 07, 2020
  • Available Online: December 02, 2022
  • The extent of fracture in the loaded rock increases with the increase of the loads, accompanied by changes in velocity structure. To monitor the fracture laws of sandstone under uniaxial loads, the acoustic emission (AE) is adopted. According to the characteristics of the AE signals, the loading process is divided into three stages, and the fracture laws of loaded sandstone at different stages are analyzed. Besides, based on the time-lapse double-difference tomography, the velocity structures between and within each stage are inverted. The results show that within the three stages of the loaded sandstone, the velocity structures of sandstone increase slightly at first, then decrease gradually, and in the end decrease rapidly. Comparing changes of the velocity structures between the segments at each stage, the region increases most at the first stage with the largest increase, while the change laws between the two segments at the third stage are the opposite. In addition, due to the heterogeneity of the rock, the rock blocks in some areas are separated from the loaded sandstone to form a "single body" under the influences of fractures. As the loads continue to increase, the velocity structures will still increase. Based on the time-lapse double-difference tomography, not only the evolution of the velocity structures of the sandstone during the loading process can be reproduced, but also the fracture degree and influence range of the loaded rock at any section can be characterized. The research results may provide some references for the stability assessment and danger warning of the loaded rock mass.
  • [1]
    岑夺丰, 黄达, 黄润秋. 岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J]. 岩土工程学报, 2014, 36(4): 695-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404016.htm

    CEN Duo-feng, HUANG Da, HUANG Run-qiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404016.htm
    [2]
    SAROGLOU C, KALLIMOGIANNIS V. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 797-806. doi: 10.1016/j.jrmge.2017.03.012
    [3]
    ZHENG Q, CHENG Y, ZONG Q, et al. Failure mechanism of different types of shotcrete based on modified Weibull distribution model[J]. Construction and Building Materials, 2019, 224: 306-316. doi: 10.1016/j.conbuildmat.2019.07.071
    [4]
    BRAUN P, GHABEZLOO S, DELAGE P, et al. Theoretical analysis of pore pressure diffusion in some basic rock mechanics experiments[J]. Rock Mechanics and Rock Engineering, 2018, 51: 1361-1378. doi: 10.1007/s00603-018-1410-8
    [5]
    陈建功, 贺虎, 张永兴. 巷道围岩松动圈形成机理的动静力学解析[J]. 岩土工程学报, 2011, 33(12): 1964-1968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112025.htm

    CHEN Jian-gong, HE Hu, ZHANG Yong-xing. Dynamic and static analysis of mechanism of loosen zone in surrounding rock of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1964-1968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112025.htm
    [6]
    刘黎旺, 李海波, 李晓锋, 等. 基于矿物晶体模型非均质岩石单轴压缩力学特性研究[J]. 岩土工程学报, 2020, 42(3): 542-550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003021.htm

    LIU Li-wang, LI Hai-bo, LI Xiao-feng, et al. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 542-550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003021.htm
    [7]
    陈俊桦, 张家生, 李新平. 考虑岩体完整程度的岩石爆破损伤模型及应用[J]. 岩土工程学报, 2016, 38(5): 857-866. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605011.htm

    CHEN Jun-hua, JIANG Jia-sheng, LI Xin-ping. Model of rock blasting-induced damage considering integrity of rock mass and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 38(5): 857-866. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605011.htm
    [8]
    彭瑞, 欧阳振华, 孟祥瑞, 等. 逆断层附近非均匀应力场声发射测试与巷道稳定性数值分析[J]. 岩土工程学报, 2019, 41(3): 509-518. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903017.htm

    PENG Rui, OUYANG Zhen-hua, MENG Xiang-rui, et al. Acoustic emission testing of nonuniform stress in strata near reverse faults and numerical analysis of stability of roadways[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 509-518. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903017.htm
    [9]
    HE T M, ZHAO Q, HA J, et al. Understanding progressive rock failure and associated seismicity using ultrasonic tomography and numerical simulation[J]. Tunnelling and Underground Space Technology, 2018, 81: 26-34. doi: 10.1016/j.tust.2018.06.022
    [10]
    徐奴文. 高陡岩质边坡微震监测与稳定性分析研究[D]. 大连: 大连理工大学, 2011.

    XU Nu-wen. Study on Microseismic Monitoring and Stability Analysis of High Steep Rock Slope[D]. Dalian: Dalian University of Technology, 2011. (in Chinese)
    [11]
    徐奴文, 李彪, 戴峰, 等. 基于微震监测的顺层岩质边坡开挖稳定性分析[J]. 岩石力学与工程学报, 2016, 35(10): 2089-2097. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610015.htm

    XU Nu-wen, LI Biao, DAI Feng, et al. Stability analysis of bedding rock slopes during excavation based on microseismic monitoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10): 2089-2097. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201610015.htm
    [12]
    陈国庆, 陈毅, 孙祥, 等. 开放型岩桥裂纹贯通机理及脆性破坏特征研究[J]. 岩土工程学报, 2020, 42(5): 908-915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005018.htm

    CHEN Guo-qing, CHEN Yi, SUN Xiang, et al. Crack coalescence and brittle failure characteristics of open rock bridges[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 908-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005018.htm
    [13]
    文志杰, 田雷, 蒋宇静, 等. 基于应变能密度的非均质岩石损伤本构模型研究[J]. 岩石力学与工程学报, 2019, 38(7): 1332-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907004.htm

    WEN Zhi-jie, TIAN Lei, JIANG Yu-jing, et al. Research on damage constitutive model of inhomogeneous rocks based on strain energy density[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1332-1343. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907004.htm
    [14]
    李斌, 黄达, 姜清辉, 等. 层理方向对砂岩断裂模式及韧度的影响规律试验研究[J]. 岩土工程学报, 2019, 41(10): 1854-1862. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910011.htm

    LI Bin, HUANG Da, JIANG Qing-hui, et al. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910011.htm
    [15]
    刘新荣, 许彬, 刘永权, 等. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析[J]. 岩土工程学报, 2020, 45(4): 632-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm

    LIU Xin-rong, XU Bin, LIU Yong-quan, et al. Cumulative damage and stability analysis of bedding rock slope under frequent microseisms[J]. Chinese Journal of Geotechnical Engineering, 2020, 45(4): 632-641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm
    [16]
    王鹏, 楚文杰, 陈磊, 等. 大型地下洞室岩梁开挖主要工程地质问题及处理措施讨论[J]. 岩土工程学报, 2019, 41(11): 2165-2172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911027.htm

    WANG Peng, CHU Wen-jie, CHEN Lei, et al. Main engineering geological problems and treatment measures of large underground cavern rock beams during excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2165-2172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911027.htm
    [17]
    王春来, 侯晓琳, 李海涛, 等. 单轴压缩砂岩细观裂纹动态演化特征试验研究[J]. 岩土工程学报, 2019, 41(11): 2120-2125. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911021.htm

    WANG Chun-lai, HOU Xiao-lin, LI Hai-tao, et al. Experimental investigation on dynamic evolution characteristics of micro-cracks for sandstone samples under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2120-2125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911021.htm
    [18]
    吴海波, 申学林, 王杰, 等. 三峡库区上地壳三维速度结构的双差层析成像研究[J]. 地球物理学报, 2018, 61(7): 2802-2814. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807013.htm

    WU Hai-bo, SHEN Xue-lin, WANG Jie, et al. Three-dimensional velocity structure of upper crust in the Three Gorges Reservoir area derived from double-difference tomography[J]. Chinese Journal of Geophysics, 2018, 61(7): 2802-2814. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807013.htm
    [19]
    华雨淋, 吕彦. 腾冲火山及周边地区双差层析成像[J]. 地球物理学报, 2019, 62(8): 2982-2990. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201908018.htm

    HUA Yu-lin, LÜ Yan. Double differential tomography of the Tengchong volcano and adjacent areas[J]. Chinese Journal of Geophysics, 2019, 62(8): 2982-2990. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201908018.htm
    [20]
    ZHANG H J, THURBER C H. Double-difference tomography: the method and its application to the Hayward fault, California[J]. Bulletin of the Seismological Society of America, 2003, 93(5): 1875-1889.
    [21]
    ZHANG H J, THURBER C. Development and applications of double-difference seismic tomography[J]. Pure and Applied Geophysics, 2006, 163(2/3): 373-403.
    [22]
    马昭军, 刘洋. 地震波衰减反演研究综述[J]. 地球物理学进展, 2005(4): 1074-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200504030.htm

    MA Zhao-jun, LIU Yang. A summary of research on seismic attenuation[J]. Progress in Geophysics, 2005(4): 1074-1082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200504030.htm
    [23]
    齐诚, 赵大鹏, 陈颙, 等. 首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J]. 地球物理学报, 2006(3): 805-815. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200603024.htm

    QI Cheng, ZHAO Da-peng, CHEN Yong, et al. 3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese capital region[J]. Chinese Journal of Geophysics, 2006, 49(3): 805-815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200603024.htm
    [24]
    BOLLA A, PARONUZZI P. Numerical investigation of the pre-collapse behavior and internal damage of an unstable rock slope[J]. Rock Mechanics and Rock Engineering, 2020, 53: 2279-2300.
    [25]
    邓朝福, 刘建锋, 陈亮, 等. 不同含水状态花岗岩断裂力学行为及声发射特征[J]. 岩土工程学报, 2017, 39(8): 1538-1544. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708029.htm

    DENG Chao-fu, LIU Jian-feng, CHEN Liang, et al. Energy release law during the damage evolution of water-bearing coal and rock and pick-up of AE signals of key pregnancy disasters[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 39(8): 1538-1544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708029.htm
    [26]
    曾刊鹏, 刘阳军, 纪洪广, 等. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征[J]. 岩土工程学报, 2017, 39(3): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703021.htm

    ZENG Peng, LIU Yang-jun, JI Hong-guang, et al. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 509-517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703021.htm
    [27]
    ZHANG J, ZHANG H J, CHEN E H, et al. Real-time earthquake monitoring using a search engine method[J]. Nature Communications, 2014, 5: 5664. doi: 10.1038/ncomms6664.
    [28]
    ZHANG H J, WANG F, Myhill R, et al. Slab morphology and deformation beneath Izu-Bonin[J]. Nature Communications, 2019, 10: 1310. doi: 10.1038/s41467-019-09279-7.
    [29]
    黄达, 张晓景, 顾东明. “三段式”岩石滑坡的锁固段破坏模式及演化机制[J]. 岩土工程学报, 2018, 40(9): 1601-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809006.htm

    HUANG Da, ZHANG Xiao-jing, GU Dong-ming. Failure pattern and evolution mechanism of locking section in rock slope with three-section landslide mode[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1601-1609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809006.htm
    [30]
    蔡武, 窦林名, 李振雷, 等. 矿震震动波速度层析成像评估冲击危险的验证[J]. 地球物理学报, 2016, 59(1): 252-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201601021.htm

    CAI Wu, DOU Lin-ming, LI Zhen-lei, et al. Verification of passive seismic velocity tomography in rock burst hazard assessment[J]. Chinese Journal of Geophysics, 2016, 59(1): 252-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201601021.htm
  • Related Articles

    [1]FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014
    [2]LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016
    [3]LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023
    [4]ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010
    [5]GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071.
    [6]LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.
    [7]Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855.
    [8]ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839.
    [9]HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032.
    [10]SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737.
  • Cited by

    Periodical cited type(11)

    1. 吕庆强,蔡伟. 某库区移民场地条件变化后的砂土液化研究. 地质灾害与环境保护. 2024(01): 70-73 .
    2. 李雨润,范浩然,闫志晓,辛晓梅. 干砂与饱和砂土场地直斜群桩横向动力响应特性对比研究. 自然灾害学报. 2024(03): 202-216 .
    3. 杨洋,魏怡童. 基于分类树的液化概率等级评估新方法. 岩土力学. 2024(07): 2175-2186+2194 .
    4. 李萍萍,赵少飞,鲍俊文,刘子源. 基于标贯试验的含细粒砂土液化概率判别新模型. 防灾减灾工程学报. 2024(05): 1133-1139 .
    5. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 .
    6. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 .
    7. 王维铭,陈龙伟,郭婷婷,汪云龙,凌贤长. 基于中国砂土液化数据库的标准贯入试验液化判别方法研究. 岩土力学. 2023(01): 279-288 .
    8. 郝少雷,张兵,徐世光,李岳峰,陈梦瑞,邓立雄,郭薇. 基于SPT-APD-DDA的砂土液化评价方法研究. 地震工程学报. 2023(04): 877-886 .
    9. 李原,王睿,张建民. 地下水位上升对北京土层地震液化的影响. 土木工程学报. 2023(S2): 95-103 .
    10. 赵志江. 泵站基础液化判别方法分析. 水利技术监督. 2023(12): 217-221 .
    11. 邱香,袁晓铭,李鑫洋,汪云龙,李兆焱,张思宇. 不同地区数据下CPT液化判别公式的差异性与互用可行性研究. 土木工程学报. 2022(S1): 241-249 .

    Other cited types(6)

Catalog

    Article views (345) PDF downloads (164) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return