• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIAO Wei-guo, JI Yong-xin, ZHANG Yue, HE Ming-wei, LIU Zhen-nan. Evolution of hydraulic parameters of red clay cover with service time[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1059-1068. DOI: 10.11779/CJGE202106009
Citation: JIAO Wei-guo, JI Yong-xin, ZHANG Yue, HE Ming-wei, LIU Zhen-nan. Evolution of hydraulic parameters of red clay cover with service time[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1059-1068. DOI: 10.11779/CJGE202106009

Evolution of hydraulic parameters of red clay cover with service time

More Information
  • Received Date: July 06, 2020
  • Available Online: December 02, 2022
  • Red clay is characterized by high liquid (plastic) limit, low permeability, medium-low compressibility and highmechanical strength. It is widely used in anti-seepage projects such as roadbed, earth dam, tailings and landfill cover in karst areas of southwest China. The hydraulic parameters of the red clay are tested in laboratory and field. The test area of red clay cover is built in landfill site, and the long-term service hydraulic characteristic parameters are monitored in natural climate. The hydraulic parameters of the red clay cover with and without vegetation are analyzed. The results show that: (1) The saturated permeability coefficient of the red clay is 10-7 cm/s with low permeability and good anti-seepage performance. The effective water storage rate is about 18.8%, which is equivalent to that of silt and silty clay, and the water storage capacity is acceptable. (2) The large-scale construction in the field and the fine sample preparation in the laboratory lead to significant differences in the structure of the two soil samples. With similar dry density, the saturated permeability coefficient of field red clay is 36.62% higher than that of laboratory remold red clay. The "discount" phenomenon of anti-permeability of compacted soil from laboratory to site should be fully considered. (3) In long-term service of 2.0 years, the permeability of the red clay cover without vegetation increases by the maximum increase of 5×103 times that at the beginning of construction due to soil cracking under the sun-rainfall cycle. With vegetation, the permeability increases or decreases compared with that at the beginning of construction (the maximum increase of 10 times) and is related to the vegetation growth state. It is shown that the vegetation has an obvious inhibitory effect on the permeability deterioration of fine-grained soil due to sun-rainfall cycles.
  • [1]
    孔雀. 废木灰处理红黏土的水力性能研究[J]. 公路工程, 2016, 41(4): 270-273. doi: 10.3969/j.issn.1674-0610.2016.04.054

    KONG Que. Research on the hydraulic performance of red clay treated with waste wood ash[J]. Highway Engineering, 2016, 41(4): 270-273. (in Chinese) doi: 10.3969/j.issn.1674-0610.2016.04.054
    [2]
    谭邦宏. 红黏土作为垃圾填埋场防渗垫层的研究进展[J]. 四川建筑, 2015, 35(6): 107-108, 111. doi: 10.3969/j.issn.1007-8983.2015.06.039

    TAN Bang-hong. Research progress of red clay as impermeable cushion in landfill[J]. Sichuan Architecture, 2015, 35(6): 107-108, 111. (in Chinese) doi: 10.3969/j.issn.1007-8983.2015.06.039
    [3]
    彭玉林, 龚爱民, 孙海燕, 等. 垃圾填埋场中改性红黏土防渗料的性能研究[J]. 人民长江, 2011, 42(增刊2): 163-165, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2011S2057.htm

    PENG Yu-lin, GONG Ai-min, SUN Hai-yan, et al. Study on properties of modified red clay anti-seepage materials in landfill sites[J]. People's Yangtze River, 2011, 42(S2): 163-165, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2011S2057.htm
    [4]
    万勇, 薛强, 赵立业, 等. 干湿循环对填埋场压实黏土盖层渗透系数影响研究[J]. 岩土力学, 2015, 36(3): 679-686, 693. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503013.htm

    WAN Yong, XUE Qiang, ZHAO Li-ye, et al. Study on the influence of dry-wet cycle on the permeability coefficient of compacted clay cover in landfill[J]. Rock and Soil Mechanics, 2015, 36(3): 679-686, 693. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503013.htm
    [5]
    焦卫国. 西北黄土/碎石覆盖层水分存储—释放机理及防渗设计方法[D]. 杭州: 浙江大学, 2015.

    JIAO Wei-guo. Water Storage and Release of Loess-Gravel Cover and Seepage Prevention Design Method in Northwest of China[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [6]
    STORMONT J C. Unsaturated drainage layers for diversion of infiltrating water[J]. Journal of Irrigation and Drainage Engineering, 1997, 123: 364-366. doi: 10.1061/(ASCE)0733-9437(1997)123:5(364)
    [7]
    STORMONT J C. The effectiveness of two capillary barriers on a 10% slope[J]. Geotechnical and Geological Engineering, 1996, 14(4): 243-267. doi: 10.1007/BF00421943
    [8]
    STORMONT J C, MORRIS C E. Method to estimate water storage capacity of capillary barriers[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(6): 297-303.
    [9]
    KHIRE M, BENSON C, BOSSCHER P. Field-scale comparison of capillary and resistive landfill covers in an arid climate[C]//14th Annual American Geophysical Union Hydrology Days, 1994, Colorado: 5-8.
    [10]
    BENSON C, SAWANG SURIYA A, TRZEBIATOWSKI B, et al. Pedogenic effects on the hydraulic properties of water balance cover soils[J]. Journal of Geotech and Geoenv Engr, 2007, 133: 349-359. doi: 10.1061/(ASCE)1090-0241(2007)133:4(349)
    [11]
    张文杰, 耿潇. 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm

    ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm
    [12]
    张文杰, 邱战洪, 朱成仁, 等. 长三角地区填埋场ET 封顶系统的性能评价[J]. 岩土工程学报, 2009, 31(3): 384-389. doi: 10.3321/j.issn:1000-4548.2009.03.013

    ZHANG Wen-jie, QIU Zhan-hong, ZHU Cheng-ren, et al. Evaluation of evapotranspiration covers of landfills in Yangtze river delta region[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 384-389. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.013
    [13]
    AUBERTIN M, CIFUENTES E, APITHY S A, et al. Analyses of water diversion along inclined covers with capillary barrier effects[J]. Canadian Geotechnical Journal, 2009, 46: 1146-1164. doi: 10.1139/T09-050
    [14]
    张文杰, 林午, 董林兵. 垃圾填埋场毛细阻滞型腾发封顶模型试验[J]. 岩土力学, 2014, 35(5): 1263-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405007.htm

    ZHANG Wen-jie, LIN Wu, DONG Lin-bing. Model test of a capillary barrier evapotranspiration cover for landfills[J]. Rock and Soil Mechanics, 2014, 35(5): 1263-1268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405007.htm
    [15]
    焦卫国, 詹良通, 季永新, 等. 植被对土质覆盖层水分运移和存储影响试验研究[J]. 岩土工程学报, 2020, 42(7): 1268-1275. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007014.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Experimental study on the effect of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1268-1275. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007014.htm
    [16]
    邱清文, 张文杰, 程泽海. 湿润地区垃圾填埋场蒸发蒸腾覆盖层参数分析[J]. 岩土力学, 2012, 33(增刊1): 283-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1046.htm

    QIU Qing-wen, ZHANG Wen-jie, CHENG Ze-hai. Parameter analysis of evapotranspiration overburden of landfill in humid area[J]. Rock and Soil Mechanics, 2012, 33(S1): 283-289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1046.htm
    [17]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1981, 44(5): 892-898.
    [18]
    焦卫国, 詹良通, 季永新, 等. 黄土-碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Field tests on water storage capacity of loess-gravel capillary barrier covers[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1149-1157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm
    [19]
    詹良通, 焦卫国, 孔令刚, 等. 黄土作为西北地区填埋场覆盖层的可行性及设计厚度分析[J]. 岩土力学, 2014, 35(12): 3361-3369. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412003.htm

    ZHAN Liang-tong, JIAO Wei-guo, KONG Ling-gang, et al. Feasibility analysis of using loess as soil cover material for landfills in the northwest of China[J]. Rock and Soil Mechanics, 2014, 35(12): 3361-3369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412003.htm
    [20]
    邓林恒, 詹良通, 陈云敏, 等. 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究[J]. 岩土工程学报, 2012, 34(1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201004.htm

    DENG Lin-heng, ZHAN Liang-tong, CHEN Yun-min, et al. Model tests on capillary-barrier cover with unsaturated drainage layer[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 75-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201004.htm
    [21]
    NG C W W, LIU J, CHEN R, et al. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall[J]. Waste Management, 2015, 38(4): 210-221.
    [22]
    KHIRE M V, BENSON C H, BOSSCHER P J. Capillary barriers: design variables and water balance[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2000, 126: 695-708.
    [23]
    MORRIS C E, STORMONT J C. Evaluation of numerical simulations of capillary barrier field tests[J]. Geotechnical and Geological Engineering, 1998, 16(3): 201-213.
    [24]
    SCANLON B R, CHRISTMAN M, REEDY R C, et al. Intercode comparisons for simulating water balance of surficial sediments in semiarid regions[J]. Water Resour Res, 2002, 38(12): 1323.
    [25]
    NG C W W, NI J J, LEUNG A K, et al. Effects of planting density on tree growth and induced soil suction[J]. Géotechnique, 2016, 66(9): 711-724.
    [26]
    NI J J, LEUNG A K, NG C W W. Investigation of plant growth and transpiration-induced suction under mixed grass-tree conditions[J]. Canadian Geotechnical Journal, 2017, 54(4): 561-573.

Catalog

    Article views (264) PDF downloads (150) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return