• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Zhuo-wei, LIN Hai, SHI Jian-yong. Shear characteristics of hydrated needle-punched GCL+GM composite liners at different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 962-967. DOI: 10.11779/CJGE202105022
Citation: HAN Zhuo-wei, LIN Hai, SHI Jian-yong. Shear characteristics of hydrated needle-punched GCL+GM composite liners at different temperatures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 962-967. DOI: 10.11779/CJGE202105022

Shear characteristics of hydrated needle-punched GCL+GM composite liners at different temperatures

More Information
  • Received Date: May 07, 2020
  • Available Online: December 04, 2022
  • The composite liner consisting of needle-punched GCL and textured geomembrane (GM) is widely used, and changing temperature environment can be encountered when it is used to deal with mining-smelting waste or municipal solid waste. Aiming at the temperature effect of the shear strength of the composite liner, the large-scale temperature-controlled water-bath direct shear apparatus is used to carry out the whole shear tests without pre-determined failure surface for the hydrated needle-punched GCL+GM composite liner at different temperatures. The shear strengths of the composite liner in the range of 10℃~70℃ are obtained, and the shear characteristics of the composite liner under different temperatures as well as normal stress are revealed. The test results show that obvious peak strengths and obvious post-peak softening phenomena occur at the stress–displacement curve at all the test temperatures. The peak shear strength and large-displacement shear resistance of the composite liner achieve the maximum value at the room temperature of about 20℃, and either increasing or decreasing temperature can cause obvious reduction in the shear strength of the composite liner. The change of temperature has a significant effect on the shear strength and failure modes of the composite liner, and accordingly attention should be paid to the temperature effect on the stability of slopes containing geosynthetics.
  • [1]
    钱学德, 施建勇, 刘晓东. 现代卫生填埋场的设计与施工[M]. 北京: 中国建筑工业出版社, 2011.

    QIAN Xue-de, SHI Jian-yong, LIU Xiao-dong. Design and Construction of Modern Sanitary Landfills[M]. Beijing: China Architecture and Building Press, 2011. (in Chinese)
    [2]
    FOX P J, SURA J M, NYE C J. Dynamic shear strength of a needle-punched GCL for monotonic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(7): 04015025. doi: 10.1061/(ASCE)GT.1943-5606.0001304
    [3]
    TOUZE-FOLTZ N, BANNOUR H, BARRAL C, et al. A review of the performance of geosynthetics for environmental protection[J]. Geotextiles and Geomembranes, 2016, 44: 656-672 doi: 10.1016/j.geotexmem.2016.05.008
    [4]
    FOX P J, STARK T D. State-of-the-art report: GCL shear strength and its measurement ten-year update[J]. Geosynthetics International, 2015, 22(1): 3-47. doi: 10.1680/gein.14.00030
    [5]
    张宏伟, 林伟岸, 詹良通, 等. 土工膜/GCL 界面剪切强度特性的试验研究[J]. 土木工程学报, 2013, 46(2): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201302015.htm

    ZHANG Hong-wei, LIN Wei-an, ZHAN Liang-tong, et al. Experiment study on shear strength of GM/GCL interface[J]. China Civil Engineering Journal, 2013, 46(2): 123-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201302015.htm
    [6]
    林海, 章玲玲, 刘小文, 等. 水化针刺GCL+GM复合衬里的单剪破坏特征[J]. 岩土工程学报, 2016, 38(9): 1660-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609016.htm

    LIN Hai, ZHANG Ling-ling, RUAN Xiao-bo, et al. Simple-shear failure characteristics of hydrated needle- punched GCL+GM composite liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1660-1667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609016.htm
    [7]
    林海, 施建勇, 钱学德. 水化针刺GCL剪切破坏机理的试验研究[J]. 岩土工程学报, 2017, 39(8): 1374-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708005.htm

    LIN Hai, SHI Jian-yong, QIAN Xue-de. Experimental research on shear failure mechanism of hydrated needle-punched GCLs[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1374-1380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708005.htm
    [8]
    YESILLER N, HANSON, J L, YEE E H. Waste heat generation: a comprehensive review[J]. Waste Management, 2015, 42(5): 116-179.
    [9]
    Jafaria NAVID H, Stark TIMOTHY D, Thalhamerc TODD. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills[J]. Waste Management, 2017, 59(1): 286-301.
    [10]
    KOERNER G R, KOERNER R M. Long-term temperature monitoring of geomembranes at dry and wet landfills[J]. Geotextiles and Geomembranes, 2006, 24(2): 72-77.
    [11]
    HANSON J L, CHRYSOVERGIS T S, YESILLER N, et al. Temperature and moisture effects on GCL and textured geomembrane interface shear strength[J]. Geosynthetics International, 2015, 22(1): 110-124. doi: 10.1680/gein.14.00035
    [12]
    STARK T D, MARTIN J W, GERBASI G T, et al. Aluminum waste reaction indicators in a municipal solid waste landfill[J]. Geotechnical and Geoenvironmental Engineering, 2012, 138(3): 252-261. doi: 10.1061/(ASCE)GT.1943-5606.0000581
    [13]
    LISTYARINI S. Designing heap leaching for nickel production that environmentally and economically sustain[J]. International Journal of Environmental Science and Development, 2017, 8(12): 799-803.
    [14]
    AKPINAR M V, BENSON C H. Effect of temperature on shear strength of two geomembrane-geotextile interfaces[J]. Geotextiles and Geomembranes, 2005, 23: 443-453.
    [15]
    GHAZIZADEH S, BAREITHER C A. Stress-controlled direct shear testing of geosynthetic clay liners II: assessment of shear behavior[J]. Geotextiles and Geomembranes, 2018, 46(5): 667-677.
    [16]
    GHAZIZADEH S, BAREITHER C A. Temperature effects on the peak and large-displacement shear strength of needle-punched reinforced GCLs[C]//Geosynthetics 2019, 2019, At Houston.
    [17]
    GHAZIZADEH S, BAREITHER C A. Temperature- Dependent shear behavior of geosynthetic clay liners[J]. Geotechnical Frontiers, 2017, 280(3): 288-298.
    [18]
    BAREITHER C A, SOLEIMANIAN M, GHAZIZADEH S. Direct shear testing of GCLs at elevated temperature and in a non-standard solution[J]. Geosynthetics International, 2018, 25(3): 350-368.
  • Cited by

    Periodical cited type(5)

    1. 冯世进,史嘉梁,郑奇腾. 填埋场复合衬垫界面动力剪切特性研究. 结构工程师. 2024(03): 125-134 .
    2. 臧年永,肖成志,杨仕钊. 膨润土防水毯搭接界面力学性能的影响因素. 深圳大学学报(理工版). 2024(05): 626-634 .
    3. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    4. 林海,曾一帆,周创兵,董平霄,施建勇. 褶皱土工膜+针刺钠基膨润土防水毯复合衬里的剪切试验研究. 岩土力学. 2023(02): 355-361+372 .
    5. 章玲玲,林海. 土工膜GCL复合衬里剪切强度确定方法. 人民长江. 2023(12): 174-178+201 .

    Other cited types(3)

Catalog

    Article views (209) PDF downloads (95) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return