• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Nan-su, HONG Cheng-yu, ZHU Min, ZHANG Yi-fan, WANG Jun. Internal deformation characteristics of soil samples in additive manufacturing based on FBG technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 940-947. DOI: 10.11779/CJGE202105019
Citation: WANG Nan-su, HONG Cheng-yu, ZHU Min, ZHANG Yi-fan, WANG Jun. Internal deformation characteristics of soil samples in additive manufacturing based on FBG technology[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 940-947. DOI: 10.11779/CJGE202105019

Internal deformation characteristics of soil samples in additive manufacturing based on FBG technology

More Information
  • Received Date: July 21, 2020
  • Available Online: December 04, 2022
  • In this study, the Fiber Bragg Grating (FBG) sensors are successfully mounted into 3D printed soil samples to investigate the internal strain characteristics in different printing stages, which mainly consist of 3D printing stage, indoor drying stage, and uniaxial compression test stage. The systematic change in infill density including 40%, 60%, 80% and 100% is taken into account in the printing stage. The test results show that the soil printed by the additive manufacturing technology can be divided into three typical stages according to the internal deformation characteristics measured by the FBG sensors, including lateral expansion stage, soil sample drying and contraction stage, and stable residual deformation stage. It is found that: (1) During the printing stage, the lateral strain of soil samples increases, linearly proportional to the change in the infill density. The strain increment of the soil with infill density of 100% is 4 times that with infill density of 40%. (2) During the drying stage, the printed soil samples contract significantly along with a stable strain change phase. The increase of infill density of soil leads to substantial rise of shrinkage strain, and presence of residual strain is postponed when the infill density is high. (3) During the uniaxial compression test stage, the lateral deformation of soil shows a sudden rise, and the measured lateral deformation is linearly proportional to the change in the infill density. The results of the FBG sensors indicate that lateral failure strain of soil increases 1.1 times when the infill density increases from 40% to 100%.
  • [1]
    CHUA C K, LEONG K F, LIM C S. Rapid Prototyping: Principles and Applications (with Companion CD-ROM)[M]. 3rd ed. Singapore: World Scientific, 2010.
    [2]
    BOS F, WOLFS R, AHMED Z, et al. Additive manufac turing of concrete in construction: potentials and challenges of 3D concrete printing[J]. Virtual & Physical Prototyping, 2016: 209-225.
    [3]
    ESPALIN D, MUSE D W, MACDONALD E, et al. 3D Print ing multifunctionality: structures with electronics[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(5/6/7/8): 963-978.
    [4]
    刘泉声, 何璠, 邓鹏海, 等. 3D打印技术在岩石物理力学试验中的应用[J]. 岩土力学, 2019, 40(9): 3397-3404. doi: 10.16285/j.rsm.2018.0991

    LIU Quan-sheng, HE Fan, DENG Peng-hai, et al. Application of 3D printing technology in rock physical mechanics experiment[J]. Rock and Soil Mechanics, 2019, 40(9): 3397-3404. (in Chinese) doi: 10.16285/j.rsm.2018.0991
    [5]
    HONG C Y, ZHANG Y F, SU D, et al. Development of a FBG Based Hoop-Strain Sensor Using 3D Printing Method[J]. IEEE Access, 2019(99): 1.
    [6]
    HONG C Y, YUAN Y, YANG Y Y, et al. A simple FBG pressure sensor fabricated using fused deposition modelling process[J]. Sensors and Actuators A: Physical, 2019(285): 269-274.
    [7]
    HONG C Y, ZHANG Y F, ABRO Z A. A fiber Bragg grating-based inclinometer fabricated using 3-D printing method for slope monitoring[J]. Geotechnical Testing Journal, 2020, 43(1): 1-15.
    [8]
    高磊, 罗易, 许蒋鹏, 等. 桩基工程3D打印混凝土材料工程性质研究[J]. 河北工程大学学报(自然科学版), 2018, 35(4): 21-24, 29. doi: 10.3969/j.issn.1673-9469.2018.04.005

    GAO Lei, LUO Yi, XU Jiang-peng, et al. 3D printed concrete material engineering properties of pile foundation engineering[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2018, 35(4): 21-24, 29. (in Chinese) doi: 10.3969/j.issn.1673-9469.2018.04.005
    [9]
    田威, 王震, 张丽, 等. 高温作用后3D打印岩体试样力学性能初探[J]. 岩土力学, 2020, 41(3): 961-969. doi: 10.16285/j.rsm.2019.0477

    TIAN Wei, WANG Zhen, ZHANG Li, et al. Prelimi nary study on the mechanical properties of 3D printed rock samples after high temperature[J]. Rock and Soil Mechanics, 2020, 41(3): 961-969. (in Chinese) doi: 10.16285/j.rsm.2019.0477
    [10]
    SONG L, JIANNG Q, SHI Y E, et al. Feasibility investigation of 3D printing technology for geotechnical physical models: study of tunnels[J]. Rock Mechanics & Rock Engineering, 2018.
    [11]
    李蕾, 张清怡, 衣惠君. 3D打印用ABS的改性与制备[J]. 工程塑料应用, 2018, 46(9): 19-23, 59. doi: 10.3969/j.issn.1001-3539.2018.09.004

    LI Lei, ZHANG Qing-yi, YI Hui-jun. Modification and preparation of ABS for 3D printing[J]. Engineering Plastics Application, 2018, 46(9): 19-23, 59. (in Chinese) doi: 10.3969/j.issn.1001-3539.2018.09.004
    [12]
    李伟, 王永涛, 焦志伟, 等. 烧结温度对3D打印B30铜镍合金制品力学性能影响的研究[J]. 有色金属工程, 2020, 10(3): 29-34. doi: 10.3969/j.issn.2095-1744.2020.03.006

    LI Wei, WANG Yong-tao, JIAO Zhi-wei, et al. Research on the influence of sintering temperature on the mechanical properties of 3D printed B30 copper-nickel alloy products[J]. Nonferrous Metal Engineering, 2020, 10(3): 29-34. (in Chinese) doi: 10.3969/j.issn.2095-1744.2020.03.006
    [13]
    赵文涛. 关于探讨建筑渣土3D打印技术在现实应用中的调研报告[J]. 城市建设理论研究(电子版), 2019(19): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201919022.htm

    ZHAO Wen-tao. Investigation report on the discussion of construction muck 3D printing technology in practical application[J]. Urban Construction Theory Research (Electronic Edition), 2019(19): 24-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201919022.htm
    [14]
    魏帅帅, 宋波, 陈华雄, 等. 月球表面3D打印技术畅想[J]. 精密成形工程, 2019, 11(3): 76-87. doi: 10.3969/j.issn.1674-6457.2019.03.008

    WEI Shuai-shuai, SONG Bo, CHEN Hua-xiong, et al. Imagine the 3D printing technology of the lunar surface[J]. Precision Forming Engineering, 2019, 11(3): 76-87. (in Chinese) doi: 10.3969/j.issn.1674-6457.2019.03.008
    [15]
    张昕然, 薛霄飞, 杨海欢, 等. 3D打印技术——建筑垃圾资源化利用的加速器[J]. 建设科技, 2017(10): 60-62. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201710029.htm

    ZHANG Xin-ran, XUE Xiao-fei, YANG Hai-huan, et al. 3D printing technology-an accelerator for the resource utilization of construction waste[J]. Construction Technology, 2017(10): 60-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS201710029.htm
    [16]
    CESARETTI G, DINI E, KESTELIER X D, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica, 2014, 93(1): 430-450.
    [17]
    HAMBACH M, VOLKMER D. Properties of 3D-printed fiber-reinforced Portland cement paste[J]. Cement and Concrete Composites, 2017, 79: 62-70. doi: 10.1016/j.cemconcomp.2017.02.001
    [18]
    LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials & Structures, 2012, 45(8): 1221-1232.
    [19]
    KAZEMIAN A, YUAN X, COCHRAN E, et al. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture[J]. Construction and Building Materials, 2017, 145: 639-647.
    [20]
    王永洪, 张明义, 白晓宇, 等. 基于光纤光栅传感技术的静压沉桩贯入特性及影响因素研究[J]. 岩土力学, 2019, 40(12): 4801-4812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912029.htm

    WANG Yong-hong, ZHANG Ming-yi, BAI Xiao-yu, et al. Study on penetration characteristics and influencing factors of static pressure pile based on fiber grating sensing technology[J]. Rock and Soil Mechanics, 2019, 40(12): 4801-4812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912029.htm
    [21]
    孟上九, 张书荣, 程有坤, 等. 光纤布拉格光栅在季节冻土路基应变检测中的应用[J]. 岩土力学, 2016, 37(2): 601-608. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602038.htm

    MENG Shang-jiu, ZHANG Shu-rong, CHENG You-kun, et al. The application of fiber Bragg grating in the strain detection of seasonally frozen soil subgrade[J]. Rock and Soil Mechanics, 2016, 37(2): 601-608. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602038.htm
    [22]
    魏广庆, 施斌, 胡盛, 等. FBG在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报, 2009, 31(4): 571-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904016.htm

    WEI Guang-qing, SHI Bin, HU Sheng, et al. Application of FBG in tunnel construction monitoring and discussion on key issues[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 571-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904016.htm
    [23]
    朱赵辉, 任大春, 李秀文, 等. 光纤光栅位移计组在围岩变形连续监测中的应用研究[J]. 岩土工程学报, 2016, 38(11): 2093-2100. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611025.htm

    ZHU Zhao-hui, REN Da-chun, LI Xiu-wen, et al. Application research of fiber grating displacement meter group in continuous monitoring of surrounding rock deformation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2093-2100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611025.htm

Catalog

    Article views (212) PDF downloads (142) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return