• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhao-nan, WANG Gang, YE Qin-guo, ZHA Jing-jing. Cyclic bounding surface model for carbonate sand incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 886-892. DOI: 10.11779/CJGE202105012
Citation: WANG Zhao-nan, WANG Gang, YE Qin-guo, ZHA Jing-jing. Cyclic bounding surface model for carbonate sand incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 886-892. DOI: 10.11779/CJGE202105012

Cyclic bounding surface model for carbonate sand incorporating particle breakage

More Information
  • Received Date: July 12, 2020
  • Available Online: December 04, 2022
  • The carbonate sand is a crushable granular material formed by the marine organisms, and its foundation is subjected to long-term dynamic loading under the ocean environment. Hence, it is of great significance to simulate the particle breakage of the carbonate sand under cyclic loading and its influences on the stress-strain behavior. The mechanism of particle breakage is decomposed of two parts: the compression mechanism with the increase in the mean effective stress, and the shear mechanism with the change of shear stress ratio. The particle breakage caused by the compression mechanism can be simulated by the Hardin’s formula. In order to adapt to the complex stress path, an incremental compression breakage model is established on the basis of the Hardin’s formula. The shear-induced breakage model includes two "declining rules" under the cyclic loading: (1) The accumulate rate of the particle breakage has a maximum value at the initial phase of the monotonic shear process, but decreases with the increasing shear strain. (2) It continuously descends during the whole shear process with the increasing amount of the particle breakage. The compression and shear breakage models are introduced to the framework of the bounding surface constitutive model, and a novel constitutive model considering the particle breakage is established by reflecting the effects of the particle breakage on the stress-strain behaviors such as modulus, strength and dilatancy through the critical state line moving with the amount of the particle breakage. The simulation capability of the proposed constitutive model is verified by comparing with the experimental results of the carbonate sand which is under the monotonic and cyclic drained triaxial compression tests.
  • [1]
    张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. doi: 10.3969/j.issn.1000-7598.2009.07.029

    ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.029
    [2]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008(10): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm

    ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008(10): 195-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
    [3]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
    [4]
    WEI H, ZHAO T, HE J, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073
    [5]
    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    [6]
    纪文栋, 张宇亭, 王洋, 等. 循环单剪下珊瑚钙质砂和普通硅质砂剪切特性对比研究[J]. 岩土力学, 2018, 39(增刊1): 291-297. doi: 10.16285/j.rsm.2018.0580

    JI Wen-dong, ZHANG Yu-ting, WANG Yang, et al. Comparative study on shear characteristics of coral calcareous sand and ordinary siliceous sand under cyclic single shear[J]. Rock and Soil Mechanics, 2018, 39(S1): 291-297. (in Chinese) doi: 10.16285/j.rsm.2018.0580
    [7]
    NANDA S, SIVAKUMAR V, DONOHUE S, et al. Small strain behavior and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading[J]. Canadian Geotechnical Journal, 2017, 55(4).
    [8]
    YU F. Particle breakage in triaxial shear of a coral sand[J]. Soils and Foundations, 2018, 58(4): 866-880. doi: 10.1016/j.sandf.2018.04.001
    [9]
    WANG G, WANG Z, YE Q, et al. Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression[J]. International Journal of Geomechanics, 2020, 20(3): 04020012. doi: 10.1061/(ASCE)GM.1943-5622.0001601
    [10]
    JIA Y, CHI S, LIN G. Constitutive model for coarse granular aggregates incorporating particle breakage[J]. Rock and Soil Mechanics, 2009, 30(11): 3261-3260. doi: 10.3969/j.issn.1000-7598.2009.11.007
    [11]
    YAO Y, YAMAMOTO H, WANG N. Constitutive model considering sand crushing[J]. Soils and Foundations, 2011, 48(2): 12-15.
    [12]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
    [13]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153 (in Chinese) doi: 10.11779/CJGE201612002
    [14]
    RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. doi: 10.1139/t04-065
    [15]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
    [16]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of coral sand under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
    [17]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 44-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 44-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
    [18]
    WANG G, ZHA J, Particle breakage evolution during cyclic triaxial shearing of a carbonate sand[J]. Soil Dynamics and Earthquake Engineering, 2020, 138: 106326.
    [19]
    CHEN Q, INDRARATNA B, CARTER J P, et al. Isotropic-kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space[J]. Canadian Geotechnical Journal, 2016, 53(4): 646-658.
    [20]
    LIU H, ZOU D, LIU J. Constitutive modeling of dense gravelly soils subjected to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(14): 1503-1518.
    [21]
    张凌凯, 王睿, 张建民, 等. 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554, 2562. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907008.htm

    ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, et al. A static and dynamic constitutive model of rockfill material considering particle breakage[J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554, 2562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907008.htm
    [22]
    刘恩龙, 陈生水, 李国英, 等. 循环荷载作用下考虑颗粒破碎的堆石体本构模型[J]. 岩土力学, 2012, 33(7): 1972-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207010.htm

    LIU En-long, CHEN Shen-shui, LI Guo-ying, et al. A constitutive model for rockfill materials incorporating grain crushing under cyclic loading[J]. Rock and Soil Mechanics, 2012, 33(7): 1972-1978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201207010.htm
    [23]
    SUN Y, XIAO Y, WEN J. Bounding surface model for ballast with additional attention on the evolution of particle size distribution[J]. Science China Technological Sciences, 2014, 57(7): 1352-1360.
    [24]
    WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. J Eng Mech-ASCE, 1990, 116(5): 983-1001.
    [25]
    杨雪强, 朱志政, 何世秀, 等. 对Lade-Duncan, Matsuoka-Nakai和Ottosen等破坏准则的认识[J]. 岩土工程学报, 2006, 28(3): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603013.htm

    YANG Xue-qiang, ZHU Zhi-zheng, HE Shi-xiu, et al. Researches on failure criteria of Lade-Duncan, Matsuoka-Nakai and Ottosen[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 337-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200603013.htm
    [26]
    RICHART F E, HALL J R, WOODS R D. Vibrations of soils and foundations[M]. Englewood Cliffs, NJ: Prentice-Hall, 1970.
    [27]
    LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186.
    [28]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [29]
    WANG Z, WANG G, YE Q. A constitutive model for crushable sands involving compression and shear induced particle breakage[J]. Computers and Geotechnics, 2020, 126: 103757.
    [30]
    LEE K L, FARHOOMAND I. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 1967, 4(1): 68-86.
    [31]
    EINAV I. Breakage mechanics-Part I: Theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297.
    [32]
    WOOD D M, MAEDA K. Changing grading of soil: Effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14.
    [33]
    CIANTIA M O, ARROYO M, O'SULLIVAN C, et al. Grading evolution and critical state in a discrete numerical model of Fontainebleau sand[J]. Géotechnique, 2019, 69(1): 1-15.
    [34]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
  • Related Articles

    [1]WAN Jun-jie, CHEN Xiang-bin, YANG Yang, QIU Zhen-feng. New conductive plastic drainage board and its electro-osmosis drainage effect under double-layer horizontal layout[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2335-2340. DOI: 10.11779/CJGE202212022
    [2]WANG Jing-zhou, DING Xuan-ming, JIANG Chun-yong, FANG Hua-qiang. Laboratory tests on vacuum preloading and electro-osmotic consolidation of calcareous soft soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 36-40. DOI: 10.11779/CJGE2021S2009
    [3]SHEN Yang, QIU Chen-chen, SONG Shun-xiang, RUI Xiao-xi, SHI Wen. Experimental study on electro-osmosis chemical grouting reinforcement of marine soft clay using tubular EKG[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 57-61. DOI: 10.11779/CJGE2017S2015
    [4]QIU Chen-chen, SHEN Yang, LI Yan-de, YOU Yan-feng, RUI Xiao-xi. Laboratory tests on soft clay using electro-osmosis in combination with vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 251-255. DOI: 10.11779/CJGE2017S1050
    [5]ZHUANG Yan-feng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 152-155. DOI: 10.11779/CJGE2016S1028
    [6]LIU Ai-min, LIANG Ai-hua, YIN Chang-quan. Comparative tests on reinforcement effects of integral and ordinary plastic drainage boards[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 130-133. DOI: 10.11779/CJGE2016S1024
    [7]CUI Shi-ping. Model test on filtration fabrics of drainage board in reinforcement of soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 87-93. DOI: 10.11779/CJGE2016S1016
    [8]WANG Ning-wei, JIAO Jun, XIU Yan-ji, ZHANG Lei. Effect of electrode spacing on standard electro-osmotic dewatering[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 177-181.
    [9]LI Ying, GONG Xiao-nan. Experimental study on effect of soil salinity on electro-osmotic dewatering in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1254-1259.
    [10]HU Yuchen, WANG Zhao, ZHUANG Yanfeng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 582-586.

Catalog

    Article views (336) PDF downloads (192) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return