• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Duo, XU Lin-rong, CAI Yu, SU Na. Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 858-866. DOI: 10.11779/CJGE202105009
Citation: FENG Duo, XU Lin-rong, CAI Yu, SU Na. Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 858-866. DOI: 10.11779/CJGE202105009

Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads

More Information
  • Received Date: March 26, 2020
  • Available Online: December 04, 2022
  • To study the influences of anisotropy and dynamic parameters on the response of a layered foundation-thin plate structure, from the basis of the anisotropic elastodynamics, a semi-analytical solution to the dynamic response of TI layered foundation-thin plate (infinite) model under moving rectangular harmonic loads is established by using the integral transformation and the matrix theory. The accuracy of the semi-analytical solution is verified by comparing the results of the existing examples, and then the parametric analysis of the displacement dynamic response of the plate is carried out. The results show that there is a large difference between the calculated results under the assumption of isotropy and transverse isotropy. Compared with that of the static loads, the displacement amplitude of the moving loads is asymmetric, and there is a critical velocity which makes the maximum amplitude of the loading area. The affected range of the displacement reduces with the increase of the frequency. The anisotropy of the first layer has a greater impact on the displacement than other layers. Adjusting its n value can optimize the displacement characteristics of the plate under dynamic loads.
  • [1]
    郭大智, 冯德成. 层状弹性体系力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001.

    GUO Da-zhi, FENG De-cheng. Mechanics of Layered Elastic System[M]. Harbin: Harbin University of Technology Press, 2001. (in Chinese)
    [2]
    凌道盛, 王云龙, 赵云, 等. 飞机主起落架移动荷载作用下道基动力响应分析[J]. 岩土工程学报, 2018, 40(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801006.htm

    LING Dao-sheng, WANG Yun-long, ZHAO Yun, et al. Dynamic response of Subgrade under moving loads of main landing gears[J]. Journal of Geotechnical Engineering, 2018, 40(1): 64-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801006.htm
    [3]
    SYNGE L. Elastic waves in anisotropic media[J]. Studies in Applied Mathematics, 1956, 35(1/2/3/4): 323-334.
    [4]
    BUCHWALD V T. Rayleigh waves in transversely isotropic media[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1961(@@@3): 293-318.
    [5]
    MUKHOPADHYAY A. Stresses produced by a normal load moving over a transversely isotropic layer of ice lying on a rigid foundation[J]. Pure and Applied Geophysics, 1965, 60(1): 29-41. doi: 10.1007/BF00874804
    [6]
    BA Z, LIANG J, LEE V W, et al. A semi-analytical method for vibrations of a layered transversely isotropic ground-track system due to moving train loads[J]. Soil Dynamics & Earthquake Engineering, 2019, 121(6): 25-39.
    [7]
    Keawsawasvong SURAPARB, Senjuntichai TEERAPONG. Dynamic interaction between multiple rigid strips and transversely isotropic poroelastic layer[J]. Computers and Geotechnics, 2019, 114: 103-144.
    [8]
    BA Z, AN D. Seismic response of a 3-D canyon in a multi-layered TI half-space modeled by an indirect boundary integral equation method[J]. Geophysical Journal International, 2019, 217(3): 1949-1973. doi: 10.1093/gji/ggz122
    [9]
    RAJAPAKSE Nimal, WANG Y. Green's functions for transversely isotropic elastic half space[J]. Journal of Engineering Mechanics, 1993, 119(9): 1724-1736. doi: 10.1061/(ASCE)0733-9399(1993)119:9(1724)
    [10]
    BARROS F C P D, LUCO J E. Response of a layered viscoelastic half-space to a moving point load[J]. Wave Motion, 1994, 19(2): 189-210. doi: 10.1016/0165-2125(94)90066-3
    [11]
    薛松涛, 谢丽宇. 有阻尼横观各向同性层状场地对入射SH波的响应分析[J]. 工程力学, 2001(@@@A02): 576-580. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200110002119.htm

    XUE Song-tao, XIE Li-yu. Response analysis of damped transversely isotropic layered ground to incident SH wave[J]. Engineering Mechanics, 2001(@@@A02): 576-580. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200110002119.htm
    [12]
    艾智勇, 胡亚东. 3D 横观各向同性地基非耦合解析层元[J]. 岩土工程学报, 2013, 35(增刊2): 717-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2131.htm

    AI Zhi-yong, HU Ya-dong. 3D transverse isotropic foundation uncoupled analytical layer element[J]. Journal of geotechnical engineering, 2013, 35(S2): 717-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2131.htm
    [13]
    韩泽军, 林皋, 周小文, 等. 横观各向同性层状地基上埋置刚性条带基础动力刚度矩阵求解[J]. 岩土工程学报, 2016, 38(6): 1117-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606019.htm

    HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, et al. Solution of dynamic stiffness matrix of embedded rigid strip foundation on transversely isotropic layered foundation[J]. Journal of Geotechnical Engineering, 2016, 38(6): 1117-1124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606019.htm
    [14]
    ESKANDARI-GHADI M. A Complete solution of the wave equations for transversely isotropic media[J]. Journal of Elasticity, 2005, 81(1): 1-19. doi: 10.1007/s10659-005-9000-x
    [15]
    RAHIMIAN M, Eskandari-Ghadi M, PAK R Y, et al. Elastodynamic potential method for transversely isotropic solid[J]. J Eng Mech, 2007, 133(10): 1134-1145.
    [16]
    KHOJASTEH A, RAHIMIAN M, ESKANDARI M, et al. Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials[J]. International Journal of Engineering Science, 2008, 46(7): 690-710. doi: 10.1016/j.ijengsci.2008.01.007
    [17]
    BA Zhen-ning, LIANG J, LEE V W, et al. 3D dynamic response of a multi-layered transversely isotropic half-space subjected to a moving point load along a horizontal straight line with constant speed[J]. International Journal of Solids and Structures, 2016, 100: 427-445.
    [18]
    ACHENBACH J D, KESHAVA S P, HERRMANN G. Moving load on a plate resting on an elastic half space[J]. Journal of Applied Mechanics, 1967, 34(4): 910-914. doi: 10.1115/1.3607855
    [19]
    房营光. 移动载荷作用下横观各向同性地基上无限板的动力响应[J]. 广东工学院学报, 1992(@@@2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGX199202006.htm

    FANG Ying-guang. Dynamic response of infinite plate on transversely isotropic foundation under moving load[J]. Journal of Guangdong Institute of Technology, 1992(@@@2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGX199202006.htm
    [20]
    王博, 张春丽, 祝彦知. 正交各向异性路基路面在移动荷载作用下的空间动力响应[J]. 郑州大学学报(工学版), 2019, 40(1): 54-58, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201901009.htm

    WANG Bo, ZHANG Chun-li, ZHU Yan-zhi. Spatial dynamic response of orthotropic subgrade and pavement under moving load[J]. Journal of Zhengzhou University (Engineering Edition), 2019, 40(1): 54-58, 65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201901009.htm
    [21]
    王春玲, 高典, 刘俊卿. 横观各向同性弹性半空间地基上四边自由各向异性矩形薄板弯曲解析解[J]. 力学季刊, 2015(@@@1): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201501011.htm

    WANG Chun-ling, GAO Dian, LIU Jun-qing. Analytical solution of bending of anisotropic rectangular thin plates on transversely isotropic elastic half space foundation[J]. Quarterly of Mechanics, 2015(@@@1): 99-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201501011.htm
    [22]
    MUHO E V. Dynamic response of an elastic plate on a transversely isotropic viscoelastic half-space with variable with depth moduli to a rectangular moving load[J]. Soil Dynamics and Earthquake Engineering. 2020, 139: 106330.
    [23]
    EUBANKS RA, STERNBERG E. On the axisymmetric problem of elasticity theory for a medium with transverse isotropy[J]. Journal of Rational Mechanics and Analysis, 1954, 3: 89-101.
    [24]
    Michel BOUCHON. Discrete wave number representation of elastic wave fields in three-space dimensions[J]. Journal of Geophysical Research, 1979, 84(B7): 3609-3614.
    [25]
    GAU Qiang, Z Wanxie, HOWSON W P. A precise method for solving wave propagation problems in layered anisotropic media[J]. Wave Motion, 2004, 40(3): 191-207.
    [26]
    卢正, 王长柏, 付建军, 等. 交通荷载作用下公路路基工作区深度研究[J]. 岩土力学, 2013, 34(2): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302004.htm

    LU Zheng, WANG Chang-bo, FU Jian-jun, et al. Research on influence depth of road subgrade induced by vehicle loads[J]. Rock and Soil Mechanics, 2013, 34(2): 316-321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302004.htm
    [27]
    杨广庆. 水泥改良土的动力特性试验研究[J]. 岩石力学与工程学报, 2003, 22(7): 1156-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm

    YANG Guang-qing. Study of dynamic performance of cement-improved soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1156-1156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm
  • Cited by

    Periodical cited type(2)

    1. 马强,黄业禹,周凤玺,曹小林. 基于TRM法的移动荷载作用下层状非饱和土地基动力响应研究. 工程力学. 2025(02): 153-163 .
    2. 朱兆斌. 交通荷载下Kelvin地基上混凝土路面厚板动力响应研究. 粉煤灰综合利用. 2024(06): 124-130+142 .

    Other cited types(7)

Catalog

    Article views (236) PDF downloads (138) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return