• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Shu-hong, ZHU Bao-qiang. Time series prediction for ground settlement in portal section of mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 813-821. DOI: 10.11779/CJGE202105004
Citation: WANG Shu-hong, ZHU Bao-qiang. Time series prediction for ground settlement in portal section of mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 813-821. DOI: 10.11779/CJGE202105004

Time series prediction for ground settlement in portal section of mountain tunnels

More Information
  • Received Date: June 09, 2020
  • Available Online: December 04, 2022
  • The monitoring value of ground settlement is characterized by complexity and nonlinear dynamic change. Aiming at the problems that the previous static models are easily disturbed by historical monitoring data and the model input weights and thresholds are more difficult to choose, a dynamic prediction method for ground settlement of the portal section of tunnels is proposed. The ground settlement is equidistant by the cubic-spline function interpolation method and decomposed into the trend and random term displacement by the time series analysis theory and the variational mode decomposition (VMD). By using the grey wolf optimizer (GWO) to optimize the weights and thresholds of the online sequential extreme learning machine (OSELM), the GWO-OSELM dynamic prediction model is established to predict the displacement components separately. Taking the portal section of Xinglong tunnel in Chongqing as an example, the proposed model is compared with the traditional model. Finally, the influences of the choice of activation function on the prediction performance of the model and some factors influencing the random term displacement are analyzed. The results show that the model can effectively predict the displacement components after the preprocessing of non-equidistant time series data, and it has high prediction accuracy and small prediction error. Moreover, the Sigmoid activation function is more suitable for the model, and the rates of the ground settlement and the vault subsidence have important influences on the random term displacement. The model provides a new way of thinking and a method for the long-term prediction of ground settlement in the portal section of mountain tunnels.
  • [1]
    王迎超, 尚岳全, 徐兴华, 等. 隧道出洞口松散围岩塌方时空预测研究[J]. 岩土工程学报, 2010, 32(12): 1868-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012011.htm

    WANG Ying-chao, SHANG Yue-quan, XU Xing-hua, et al. Time and space prediction of collapse of loose wall rock at tunnel exit[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1868-1874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012011.htm
    [2]
    谢亦朋, 杨秀竹, 阳军生, 等. 松散堆积体隧道围岩变形破坏细观特征研究[J]. 岩土力学, 2019, 40(12): 4925-4934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912043.htm

    XIE Yi-peng, YANG Xiu-zhu, YANG Jun-sheng, et al. Mesoscopic characteristics of deformation and failure on surrounding rocks of tunnel through loose deposits[J]. Rock and Soil Mechanics, 2019, 40(12): 4925-4934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912043.htm
    [3]
    ZHENG D, HUANG J, LI D Q, et al. Embankment prediction using testing data and monitored behaviour: a Bayesian updating approach[J]. Computers and Geotechnics, 2017, 93: 150-162.
    [4]
    姚仰平, 王珅, 王乃东, 等. 临线堆载影响下高铁路基长期沉降预测方法[J]. 岩土工程学报, 2019, 41(4): 625-630. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904005.htm

    YAO Yang-ping, WANG Shen, WANG Nai-dong, et al. Prediction method for long-term settlements of high-speed railway subgrade under influences of nearby loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 625-630. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904005.htm
    [5]
    WANG S H, ZHANG Z S, REN Y P, et al. UAV photogrammetry and AFSA-Elman neural network in slopes displacement monitoring and forecasting[J]. KSCE Journal of Civil Engineering, 2020, 24(8): 19-29.
    [6]
    李麟玮, 吴益平, 苗发盛, 等. 考虑变形状态动态切换的阶跃型滑坡位移区间预测方法[J]. 岩石力学与工程学报, 2019, 38(11): 2272-2287. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911012.htm

    LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al. Displacement interval prediction method for step-like landslides considering deformation state dynamic switching[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2272-2287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911012.htm
    [7]
    MOGHADDASI M R, NOORIAN-BIDGOLI M. ICA-ANN, ANN and multiple regression models for prediction of surface settlement caused by tunneling[J]. Tunnelling and Underground Space Technology, 2018, 79: 197-209.
    [8]
    CHEN R P, ZHANG P, KANG X, et al. Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods[J]. Soils and Foundations, 2019, 59(2): 284-295.
    [9]
    TOMAS J, SEJNOHA M, SEJNOHA J. Applying bayesian approach to predict deformations during tunnel construction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1765-1784.
    [10]
    ZHANG P, WU H N, CHEN R P, et al. Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: A comparative study[J]. Tunnelling and Underground Space Technology, 2020, 99.
    [11]
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
    [12]
    LIANG N Y, HUANG G B, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411-1423.
    [13]
    MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
    [14]
    公路隧道施工技术规范:JTG F60—2009[S]. 2009.

    Technical Specification for Highway Tunnel Construction: JTG F60—2009[S]. 2009. (in Chinese)
    [15]
    WANG Z, YAO W J, CAI Y Q, et al. Analysis of ground surface settlement induced by the construction of a large-diameter shallow-buried twin-tunnel in soft ground[J]. Tunnelling and Underground Space Technology, 2019, 83: 520-532.
    [16]
    ZHANG A B, CHEN T Y, LIU X X, et al. Monitoring data filter and deformation information extraction based on wavelet filter and empirical mode decomposition[J]. Applied Mechanics and Materials, 2015, 742: 261-271.
    [17]
    DU H, SONG D Q, CHEN Z, et al. Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method[J]. Journal of Cleaner Production, 2020, 270.
    [18]
    李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018, 37(6): 1395-1406. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm

    LI Lin-wei, WU Yi-ping, MIAO Fa-sheng, et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1395-1406. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806008.htm
    [19]
    王鹏宇, 王述红. 四类常见边坡岩石类别识别和边界范围确定的方法[J]. 岩土工程学报, 2019, 41(8): 1505-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm

    WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm
    [20]
    LIANG D D, LI M C, WEI R M, et al. Strategy for intercorrelation identification between metabolome and microbiome[J]. Analytical Chemistry, 2019, 91(22): 14424-14432.
  • Cited by

    Periodical cited type(8)

    1. 毛铖鑫,贾剑青,刘中帅. 多裂隙优势渗流对边坡稳定性影响研究. 兰州交通大学学报. 2024(02): 15-21 .
    2. 贾唯龙,常鹏飞,李亚军,钱铖,郭祺,李瑞杰,傅中志,张彬. 基于多源数据融合的土体空间参数不确定性缩减. 水资源与水工程学报. 2024(03): 183-191 .
    3. 贾剑青,张帮鑫,田明,刘中帅,王鹏,辛成平. 土体强度分区各向异性对边坡稳定性影响研究. 自然灾害学报. 2023(01): 76-83 .
    4. 张帮鑫,贾剑青,赖远明,王宏图,辛成平. 考虑分区各向异性和渗流作用的边坡稳定性研究. 土木与环境工程学报(中英文). 2023(04): 41-48 .
    5. 任青阳,赵梦园,孟欣,刘蓓蕾. 基于区间位移不确定算法的边坡位移反分析法. 计算机仿真. 2023(11): 267-273+299 .
    6. 仉文岗,顾鑫,刘汉龙,张青,王林,王鲁琦. 基于贝叶斯更新的非饱和土坡参数概率反演及变形预测. 岩土力学. 2022(04): 1112-1122 .
    7. 李翼飞,任青文,王启明,曹茂森,黄丹. 基于PCE代理模型和贝叶斯优化的结构参数快速反演方法. 中国科学:技术科学. 2022(06): 928-940 .
    8. 罗永明. 基于岩土工程概率分析的若干问题研究. 中国金属通报. 2019(05): 216-217 .

    Other cited types(8)

Catalog

    Article views (317) PDF downloads (263) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return