Citation: | CAI Zheng-yin, WANG Qing-shan, GUAN Yun-fei, HAN Xun, LI Wen-xuan. Influences of bulkheads on bearing characteristics of composite bucket foundation of offshore wind turbines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 751-759. DOI: 10.11779/CJGE202104018 |
[1] |
WANG X F, ZENG X W, LI J L, et al. A review on recent advancements of substructures for offshore wind turbines[J]. Energy Conversion and Management, 2018, 158: 103-119. doi: 10.1016/j.enconman.2017.12.061
|
[2] |
马鹏程, 刘润, 张浦阳, 等. 黏土中宽浅式筒型基础筒土协同承载模式研究[J]. 土木工程学报, 2019, 52(4): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201904008.htm
MA Peng-cheng, LIU Run, ZHANG Pu-yang, et al. Bucket-soil cooperative bearing capacity analysis of shallow buried bucket foundation in clay[J]. China Civil Engineering Journal, 2019, 52(4): 88-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201904008.htm
|
[3] |
丁红岩, 翟少华, 张浦阳. 海上风电大尺度顶承式筒型基础承载力特性有限元分析[J]. 工程力学, 2013, 30(6): 124-132. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201306021.htm
DING Hong-yan, ZHAI Shao-hua, ZHANG Pu-yang. Finite element analysis of bearing capacity behavior of cover-load-bearing large-scale bucket foundation for offshore wind turbines[J]. Engineering Mechanics, 2013, 30(6): 124-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201306021.htm
|
[4] |
刘润, 王磊, 丁红岩, 等. 复合加载模式下不排水饱和软黏土中宽浅式筒型基础地基承载力包络线研究[J]. 岩土工程学报, 2014, 36(1): 146-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401018.htm
LIU Run, WANG Lei, DING Hong-yan, et al. Failure envelopes of large-diameter shallow buried bucket foundation in undrained saturated soft clay under combined loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 146-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401018.htm
|
[5] |
ZHANG P Y, LIANG D S, DING H Y, et al. Floating state of a one-step integrated transportation vessel with two composite bucket foundations and offshore wind turbines[J]. Journal of Marine Science and Engineering, 2019, 7, 263. doi: 10.3390/jmse7080263
|
[6] |
孙曦源, 栾茂田, 唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. 岩土力学, 2010, 31(2): 667-672. doi: 10.3969/j.issn.1000-7598.2010.02.056
SUN Xi-yuan, LUAN Mao-tian, TANG Xiao-wei. Study of horizontal bearing capacity of bucket foundation on saturated soft clay ground[J]. Rock and Soil Mechanics, 2010, 31(2): 667-672. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.02.056
|
[7] |
杨立功, 蔡正银, 徐志峰. 新型桶式基础防波堤桶体阻力分析[J]. 岩土工程学报, 2016, 38(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604024.htm
YANG Li-gong, CAI Zheng-yin, XU Zhi-feng. Numerical analysis of bucket resistance of new bucket foundation breakwater[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 747-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604024.htm
|
[8] |
LIU M M, LIAN J J, YANG M. Experimental and numerical studies on lateral bearing capacity of bucket foundation in saturated sand[J]. Ocean Engineering, 2017(144): 14-20.
|
[9] |
朱斌, 应盼盼, 郭俊科, 等. 海上风电机组吸力式桶形基础承载力分析与设计[J]. 岩土工程学报, 2013, 35(增刊1): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1076.htm
ZHU Bin, YING Pan-pan, GUO Jun-ke, et al. Analysis and design of bearing capacity of suction caisson foundations of offshore wind turbines[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 443-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1076.htm
|
[10] |
ZHANG Y K, GAO Y F, LI D Y, et al. H-M bearing capacity of a modified suction caisson determined by using load-/displacement-controlled methods[J]. China Ocean Engineering, 2016, 30(6): 926-941.
|
[11] |
蒋敏敏, 蔡正银, 肖昭然, 等. 黏土中箱筒型基础防波堤静力失稳破坏模式和承载力研究[J]. 岩土工程学报, 2020, 42(4): 642-649. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004009.htm
JIANG Min-min, CAI Zheng-yin, XIAO Zhao-ran, et al. Failure modes and bearing capacity of composite bucket foundation breakwater in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 642-649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004009.htm
|
[12] |
黎冰, 高玉峰, 沙成明, 等. 砂土中吸力式沉箱基础的最大承载力计算方法[J]. 东南大学学报(自然科学版), 2012, 42(6): 1201-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201206031.htm
LI Bing, GAO Yu-feng, SHA Cheng-ming, et al. Calculation method for maximum bearing capacity of suction caisson foundation in sand[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1201-1205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201206031.htm
|
[13] |
肖忠, 王元战, 及春宁. 基于极限平衡法的箱筒型基础防波堤稳定性分析[J]. 岩土工程学报, 2013, 35(5): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305004.htm
XIAO Zhong, WANG Yuan-zhan, JI Chun-ning. Stability analysis of bucket foundation breakwaters based on limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 828-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305004.htm
|
[14] |
BAGHERI P Y, SON S W, KIM J M. Investigation of the load-bearing capacity of suction caissons used for offshore wind turbines[J]. Applied Ocean Research, 2017, 67: 148-161.
|
[15] |
刘永刚, 丁红岩, 张浦阳. 淤泥质黏土中复合筒型基础水平承载力试验研究[J]. 岩土工程学报, 2016, 38(12): 2315-2321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612025.htm
LIU Yong-gang, DING Hong-yan, ZHANG Pu-yang. Model tests on bearing capacity of composite bucket foundation in clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2315-2321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612025.htm
|
[16] |
DING H Y, LIU Y G, ZHANG P Y, et al. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 2015, 103: 114-122.
|
[17] |
WANG X F, YANG X, ZENG X W. Lateral response of improved suction bucket foundation for offshore wind turbine in centrifuge modelling[J]. Ocean Engineering, 2017(141): 295-307.
|
[18] |
乐丛欢, 丁红岩, 张浦阳. 分舱板对海上风机混凝土筒型基础承载模式的影响[J]. 工程力学, 2013, 30(4): 429-434. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304063.htm
LE Cong-huan, DING Hong-yan, ZHANG Pu-yang. Influences of bulkheads on the bearing mode of concrete bucket foundation for offshore wind turbine[J]. Engineering Mechanics, 2013, 30(4): 429-434 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201304063.htm
|
[19] |
练继建, 贺蔚, 吴慕丹, 等. 带分舱板海上风电筒型基础承载特性试验研究[J]. 岩土力学, 2016, 37(10): 2746-2752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610002.htm
LIAN Ji-jian, HE Wei, WU Mu-dan, et al. Experimental study of bearing characteristic of bucket foundation of offshore wind turbine with bulkheads[J]. Rock and Soil Mechanics, 2016, 37(10): 2746-2752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610002.htm
|
[20] |
SUN L Q, HUO Z L, YAN S W. Numerical studies on the working mechanism and bearing capacity of bucket foundations for offshore wind turbines[J]. Journal of Coastal Research, 2015, 73: 478-482.
|
[21] |
肖忠, 葛博睿, 王元战, 等. 十字形内隔板对桶形基础各单向承载力和破坏模式的影响分析[J]. 岩土力学, 2017, 38(11): 3136-3144. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711009.htm
XIAO Zhong, GE Bo-rui, WANG Yuan-zhan, et al. Influence of cruciform inner clapboards on uniaxial bearing capacity and failure mode of bucket foundation[J]. Rock and Soil Mechanics, 2017, 38(11): 3136-3144. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711009.htm
|
[22] |
Design of Offshore Wind Turbine Structures: DNV—OS—J101[S]. 2007.
|
[23] |
海上风电场工程风电机组基础设计规范:NB/T 10105—2018[S]. 2019.
Code for Design of Wind Turbine Generator System Foundations for Offshore Wind Power Projects: NB/T 10105—2018[S]. 2019. (in Chinese)
|
[24] |
李文轩. 海上风电复合筒型基础水平承载特性研究[D]. 南京: 南京水利科学研究院, 2018.
LI Wen-xuan. Horizontal Bearing Characteristics of Composite Bucket Foundation for Offshore Wind Turbine[D]. Nanjing: Nanjing Hydraulic Research Institute, 2018. (in Chinese)
|
[25] |
FELIGHA M, HAMMOUD F, BELACHIA M, et al. Experimental investigation of frictional behavior between cohesive soils and solid materials using direct shear apparatus[J]. Geotechnical and Geological Engineering, 2016, 34(2): 567-578.
|
[1] | JIANG Lusha, PU Hefu, MIN Ming, QIU Jinwei, CHEN Xiaoxiong. Sorption properties of polymer-modified bentonite to Pb(Ⅱ) ions[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 54-59. DOI: 10.11779/CJGE2024S20018 |
[2] | ZHANG Wen-jie, JIANG Feng-yong. Experimental study on effect of dissolved organic matter on mobility of soil colloids[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2013-2019. DOI: 10.11779/CJGE202111007 |
[3] | XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012 |
[4] | HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013 |
[5] | HE Shun-hui, XIE Shi-ping, ZHANG Jiang. Adsorption and isolation of GCL on copper ions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 79-82. DOI: 10.11779/CJGE2016S1014 |
[6] | LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. |
[7] | LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648. |
[8] | Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[9] | NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102. |
[10] | Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100. |
1. |
陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
![]() | |
2. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
3. |
李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 .
![]() | |
4. |
林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
![]() | |
5. |
刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
![]() | |
6. |
王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
![]() | |
7. |
倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
![]() | |
8. |
康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .
![]() |