• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ji-ru, LUO Ming-xing, PENG Wei-ke, ZHANG Bi-wen. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. DOI: 10.11779/CJGE202104001
Citation: ZHANG Ji-ru, LUO Ming-xing, PENG Wei-ke, ZHANG Bi-wen. Drained triaxial tests on mechanical properties of calcareous sand under various stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 593-602. DOI: 10.11779/CJGE202104001

Drained triaxial tests on mechanical properties of calcareous sand under various stress paths

More Information
  • Received Date: June 27, 2020
  • Available Online: December 04, 2022
  • The mechanical properties of calcareous sand are low in strength and easy to crush and have the characteristics of stress path dependence. In order to study the effects of different stress paths on the particle crushing and mechanical properties of calcareous sand, a series of drained triaxial compression tests under five stress paths are carried out on calcareous sand with different consolidation pressures. The results show that the stress path has a great influence on the stress-strain relationship, shear strength and particle breakage of the calcareous sand. Under the same consolidation pressure, the dilation phenomenon is obvious in the constant axial stress tests where the particle breakage index is the smallest, and the peak internal friction angle is the largest. The dilation phenomenon is less noticeable in the constant confining pressure tests with the largest particle breakage index and the smallest peak internal friction angle. These properties of the constant average principal stress tests are in between the above tests. The isotropic principal stress ratio tests and the isotropic stress consolidation tests mainly show the volume compression of samples during loading, so they are very different from the other three stress path tests. The influence factors of different stress paths on the stress-strain relationship and strength of calcareous sands, in addition to the characteristics of sands with stress path dependence, mainly come from the effects of inconsistent particle breakage caused by different stress paths and consolidation pressures. This is why the mechanical properties of the calcareous sand show great differences in the tests with different stress paths.
  • [1]
    LADE P V, DUNCAN J M. Stress-path dependent behavior of cohesionless soil[J]. Journal of Geotechnical Engineering Division, ASCE, 1976, 102(GT1): 42-48.
    [2]
    FEDA J. Stress-path dependent shear strength of sand[J]. Journal of Geotechnical Engineering Division, ASCE, 1994, 120(6): 958-974. doi: 10.1061/(ASCE)0733-9410(1994)120:6(958)
    [3]
    孙岳崧, 濮家骝, 李广信. 不同应力路径对砂土应力-应变关系影响[J]. 岩土工程学报, 1987, 9(6): 78-88. doi: 10.3321/j.issn:1000-4548.1987.06.009

    SUN Yue-song, PU Jia-liu, LI Guang-xin. The effects of different stress paths on stress-strain behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(6): 78-88. (in Chinese) doi: 10.3321/j.issn:1000-4548.1987.06.009
    [4]
    丘金营. 应力路径对砂土应力应变关系的影响[J]. 岩土工程学报, 1995, 17(2): 75-82. doi: 10.3321/j.issn:1000-4548.1995.02.011

    QIU Jin-ying. Effects of stress path on stress-strain behavior of sand[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(2): 75-82. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.02.011
    [5]
    许成顺, 文利明, 杜修力, 等. 不同应力路径条件下的砂土剪切特性试验研究[J]. 水利学报, 2010, 41(1): 108-112. doi: 10.13243/j.cnki.slxb.2010.01.017

    XU Cheng-shun, WEN Li-ming, DU Xiu-li, et al. Experimental study on shear behaviors of sand under different stress path[J]. Journal of Hydraulic Engineering, 2010, 41(1): 108-112. (in Chinese) doi: 10.13243/j.cnki.slxb.2010.01.017
    [6]
    路德春, 罗汀, 姚仰平. 砂土应力路径本构模型的试验验证[J]. 岩土力学, 2005, 26(5): 717-722. doi: 10.3969/j.issn.1000-7598.2005.05.008

    LU De-chun, LUO Ting, YAO Yang-ping. Test validating of constitutive model of sand considering complex stress path[J]. Rock and Soil Mechanics, 2005, 26(5): 717-722. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.05.008
    [7]
    赖勇, 施建勇, 雷国辉. 砂土在小应变下考虑应力路径影响的本构模型的试验研究[J]. 岩土工程学报, 2006, 28(6): 745-749. doi: 10.3321/j.issn:1000-4548.2006.06.013

    LAI Yong, SHI Jian-yong, LEI Guo-hui. Experimental study on constitutive model of sandy soil with consideration of stress path at small strain[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 745-749. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.06.013
    [8]
    曹培, 蔡正银. 砂土应力路径试验的数值模拟[J]. 岩土工程学报, 2008, 30(1): 133-137. doi: 10.3321/j.issn:1000-4548.2008.01.021

    CAO Pei, CAI Zheng-yin. Numerical simulation of stress path tests on sand[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 133-137. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.01.021
    [9]
    侯世伟, 路德春, 程星磊, 等. 基于数字图像测量技术的砂土应力路径试验研究[J]. 岩土工程学报, 2011, 33(增刊1): 403-408. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1078.htm

    HOU Shi-wei, LU De-chun, CHENG Xing-lei, et al. Experimental study on stress path of sand based on digital image processing technique[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 403-408. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1078.htm
    [10]
    杨光, 张丙印, 于玉贞, 等. 不同应力路径下粗粒料的颗粒破碎试验研究[J]. 水利学报, 2010, 41(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201003013.htm

    YANG Guang, ZHANG Bing-yin, YU Yu-zhen, et al. An experimental study on particle breakage of coarse-grained materials under various stress paths[J]. Journal of Hydraulic Engineering, 2010, 41(3): 338-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201003013.htm
    [11]
    秦尚林, 杨兰强, 高惠, 等. 不同应力路径下绢云母片岩粗粒料力学特性试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1932-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409026.htm

    QIN Shang-lin, YANG Lan-qiang, GAO Hui, et al. Experimental study on mechanical properties of coarse aggregates of sericite schist under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1932-1938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409026.htm
    [12]
    王远, 张胜, 敖大华, 等. 复杂应力路径下堆石料的颗粒破碎特性研究[J]. 岩土工程学报, 2018, 40(4): 698-706. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804020.htm

    WANG Yuan, ZHANG Sheng, AO Da-hua, et al. Particle breakage characteristics of rockfills under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 698-706. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804020.htm
    [13]
    孔宪京, 宁凡伟, 刘京茂, 等. 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906005.htm

    KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Influences of stress paths and saturation on particle breakage of rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906005.htm
    [14]
    尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm

    YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm
    [15]
    张家铭, 张凌, 蒋国盛, 等. 剪切作用下钙质砂颗粒破碎试验研究[J]. 岩土力学, 2008, 29(10): 2789-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm

    ZHANG Jia-ming, ZHANG Ling, JIANG Guo-sheng, et al. Research on particle crushing of calcareous sands under triaxial shear[J]. Rock and Soil Mechanics, 2008, 29(10): 2789-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200810039.htm
    [16]
    王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究[J]. 岩土工程学报, 2018, 40(5): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm

    WANG Gang, YE Qin-guo, ZHA Jing-jing. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802-810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805006.htm
    [17]
    王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755-760. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755-760. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904025.htm
    [18]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
    [19]
    ZHANG J R, LUO M X. Dilatancy and critical state of calcareous sand incorporating particle breakage[J]. International Journal of Geomechanics, 2020, 20(4): 04020030.
    [20]
    LUO M X, ZHANG J R, LIU X X, et al. Critical state elastoplastic constitutive model of angular-shaped and fragile granular materials[J]. Marine Georesources & Geotechnology, 2020, 1785065.
    [21]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
    [22]
    MUIR WOOD D, BELKHEIR K, LIU D F. Strain softening and state parameter for sand modelling[J]. Géotechnique, 1994, 44(2): 335-339.
    [23]
    DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1970, 96(SM5): 1629-1653.
    [24]
    张季如, 华晨, 罗明星, 等. 三轴排水剪切下钙质砂的颗粒破碎特性[J]. 岩土工程学报, 2020, 42(9): 1593-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm

    ZHANG Ji-ru, HUA Chen, LUO Ming-xing, et al. Behavior of particle breakage in calcareous sands during drained triaxial shearing[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1593-1602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202009007.htm

Catalog

    Article views (531) PDF downloads (439) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return