Citation: | LAN Peng, LI Hai-chao, YE Xin-yu, ZHANG Sheng, SHENG Dai-chao. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. DOI: 10.11779/CJGE202103023 |
[1] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E, et al. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
|
[2] |
LU L, MENG X, MAO Z, et al. DeepXDE: A deep learning library for solving differential equations[J]. ArXiv Preprint ArXiv:1907.04502, 2019.
|
[3] |
TARTAKOVSKY A M, MARRERO C O, PERDIKARIS P, et al. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems[J]. Water Resources Research, 2020, 56(5): e2019WR026731.
|
[4] |
MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. doi: 10.1016/j.cma.2019.112789
|
[5] |
RAISSI M, KARNIADAKIS G E. Hidden physics models: machine learning of nonlinear partial, differential equations[J]. Journal of Computational Physics, 2018, 357: 125-141. doi: 10.1016/j.jcp.2017.11.039
|
[6] |
FANG Z, ZHAN J. Deep physical informed neural networks for metamaterial design[J]. IEEE Access, 2019, 8: 24506-24513.
|
[7] |
PANG G, LU L, KARNIADAKIS G E, et al. FPINNs: Fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845
|
[8] |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation, 2016, Savannah: 265-283.
|
[9] |
ADAM P, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[C]//31st Conference on Neural Information Processing Systems(NIPS 2017), 2017, Long Beach.
|
[10] |
ROBBINS H, MONRO S. A stochastic approximation method[J]. Annals of Mathematical Stats, 1951, 22(3): 400-407. doi: 10.1214/aoms/1177729586
|
[11] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations, 2015, San Diego.
|
[12] |
BYRD R H, LU P, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208. doi: 10.1137/0916069
|
[13] |
梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm
MEI Guo-xiong, XIA Jun, MEI Ling. Terzaghi’s one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm
|
[14] |
冯健雪. 连续排水边界条件下成层地基一维固结理论研究[D]. 南宁: 广西大学, 2019.
FENG Jian-xue. Studies on One-dimensional Consolidation Theory for Layered Soils under Continuous Drainage Boundary Conditions[D]. Nanning: Guangxi University, 2019. (in Chinese)
|
[15] |
CHAI J, MATSUNAGA K, SAKAI A, et al. Comparison of vacuum consolidation with surcharge load induced consolidation of a two-layer system[J]. Géotechnique, 2009, 59(7): 637-641. doi: 10.1680/geot.8.T.020
|
[16] |
FINN C, ABBEEL P, LEVINE S, et al. Model-agnostic meta-learning for fast adaptation of deep networks[C]//34th International Conference on Machine Learning, 2017, Sydney: 1126-1135.
|
1. |
王金元,彭远锋,芮瑞. 基于MEA-BP神经网络预测冻土应力-应变关系. 武汉理工大学学报. 2024(03): 86-92+115 .
![]() | |
2. |
邓天牧,黄钟民,彭林欣. 基于自动微分的桁架结构材料非线性分析. 广西大学学报(自然科学版). 2024(02): 269-279 .
![]() | |
3. |
兰鹏,张升,苏晶晶. 改进PINNs算法及其在非线性固结求解中的应用. 应用基础与工程科学学报. 2024(05): 1407-1419 .
![]() | |
4. |
熊海斌,余虔,张升,童晨曦,兰鹏,刘光庆. 考虑颗粒破碎的砂土UH模型及其参数反演. 岩土工程学报. 2023(01): 134-143 .
![]() | |
5. |
张升,兰鹏,苏晶晶,熊海斌. 基于PINNs算法的地下水渗流模型求解及参数反演. 岩土工程学报. 2023(02): 376-383+443-444 .
![]() | |
6. |
霍海峰,黄昊宇,李其昂,胡彪,张兆文. 基于PINNs的高度非线性Richards入渗模型研究. 中国民航大学学报. 2023(05): 6-12 .
![]() | |
7. |
朱帅润,李绍红,钟彩尹,吴礼舟. 时间分数阶的非饱和渗流数值分析及其应用. 应用数学和力学. 2022(09): 966-975 .
![]() |