• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LAN Peng, LI Hai-chao, YE Xin-yu, ZHANG Sheng, SHENG Dai-chao. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. DOI: 10.11779/CJGE202103023
Citation: LAN Peng, LI Hai-chao, YE Xin-yu, ZHANG Sheng, SHENG Dai-chao. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. DOI: 10.11779/CJGE202103023

PINNs algorithm and its application in geotechnical engineering

More Information
  • Received Date: August 05, 2020
  • Available Online: December 04, 2022
  • The physical information neural networks (PINNs) algorithm, a new mesh-free algorithm, uses the automatic differential method to embed the partial differential equation directly into the neural networks so as to realize the intelligent solution of the partial differential equation, which has the advantages of fast convergence speed and high computational accuracy. The PINNs algorithm has a promising application in geotechnical engineering because it can solve the complex partial differential equations (PDEs) and inverse the unknown parameters of the PDEs. In order to verify the feasibility of the PINNs algorithm in geotechnical engineering, the one-dimensional consolidation process with the continuous drainage boundary condition is taken as an example to illustrate the procedures of the PINNs algorithm in terms of both the forward and inverse problems. The results show that the PINNs solution is highly consistent with the analytical one, indicating that the PINNs algorithm can provide an alternative approach for solving the related problems in geotechnical engineering.
  • [1]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E, et al. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [2]
    LU L, MENG X, MAO Z, et al. DeepXDE: A deep learning library for solving differential equations[J]. ArXiv Preprint ArXiv:1907.04502, 2019.
    [3]
    TARTAKOVSKY A M, MARRERO C O, PERDIKARIS P, et al. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems[J]. Water Resources Research, 2020, 56(5): e2019WR026731.
    [4]
    MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. doi: 10.1016/j.cma.2019.112789
    [5]
    RAISSI M, KARNIADAKIS G E. Hidden physics models: machine learning of nonlinear partial, differential equations[J]. Journal of Computational Physics, 2018, 357: 125-141. doi: 10.1016/j.jcp.2017.11.039
    [6]
    FANG Z, ZHAN J. Deep physical informed neural networks for metamaterial design[J]. IEEE Access, 2019, 8: 24506-24513.
    [7]
    PANG G, LU L, KARNIADAKIS G E, et al. FPINNs: Fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845
    [8]
    ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation, 2016, Savannah: 265-283.
    [9]
    ADAM P, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[C]//31st Conference on Neural Information Processing Systems(NIPS 2017), 2017, Long Beach.
    [10]
    ROBBINS H, MONRO S. A stochastic approximation method[J]. Annals of Mathematical Stats, 1951, 22(3): 400-407. doi: 10.1214/aoms/1177729586
    [11]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations, 2015, San Diego.
    [12]
    BYRD R H, LU P, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208. doi: 10.1137/0916069
    [13]
    梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm

    MEI Guo-xiong, XIA Jun, MEI Ling. Terzaghi’s one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm
    [14]
    冯健雪. 连续排水边界条件下成层地基一维固结理论研究[D]. 南宁: 广西大学, 2019.

    FENG Jian-xue. Studies on One-dimensional Consolidation Theory for Layered Soils under Continuous Drainage Boundary Conditions[D]. Nanning: Guangxi University, 2019. (in Chinese)
    [15]
    CHAI J, MATSUNAGA K, SAKAI A, et al. Comparison of vacuum consolidation with surcharge load induced consolidation of a two-layer system[J]. Géotechnique, 2009, 59(7): 637-641. doi: 10.1680/geot.8.T.020
    [16]
    FINN C, ABBEEL P, LEVINE S, et al. Model-agnostic meta-learning for fast adaptation of deep networks[C]//34th International Conference on Machine Learning, 2017, Sydney: 1126-1135.
  • Cited by

    Periodical cited type(7)

    1. 王金元,彭远锋,芮瑞. 基于MEA-BP神经网络预测冻土应力-应变关系. 武汉理工大学学报. 2024(03): 86-92+115 .
    2. 邓天牧,黄钟民,彭林欣. 基于自动微分的桁架结构材料非线性分析. 广西大学学报(自然科学版). 2024(02): 269-279 .
    3. 兰鹏,张升,苏晶晶. 改进PINNs算法及其在非线性固结求解中的应用. 应用基础与工程科学学报. 2024(05): 1407-1419 .
    4. 熊海斌,余虔,张升,童晨曦,兰鹏,刘光庆. 考虑颗粒破碎的砂土UH模型及其参数反演. 岩土工程学报. 2023(01): 134-143 . 本站查看
    5. 张升,兰鹏,苏晶晶,熊海斌. 基于PINNs算法的地下水渗流模型求解及参数反演. 岩土工程学报. 2023(02): 376-383+443-444 . 本站查看
    6. 霍海峰,黄昊宇,李其昂,胡彪,张兆文. 基于PINNs的高度非线性Richards入渗模型研究. 中国民航大学学报. 2023(05): 6-12 .
    7. 朱帅润,李绍红,钟彩尹,吴礼舟. 时间分数阶的非饱和渗流数值分析及其应用. 应用数学和力学. 2022(09): 966-975 .

    Other cited types(9)

Catalog

    Article views (655) PDF downloads (524) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return