• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015
Citation: YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015

Deep mining of big data of tests and constitutive relation of dilative soils

More Information
  • Received Date: March 29, 2020
  • Available Online: December 04, 2022
  • Due to the restriction of the traditional constitutive theory and the lack of in-depth studies on the common change laws of the basic mechanical characteristics of soils, most of the constitutive models established at present cannot reflect the actual deformation mechanism of soils well. A big data processing platform of Hadoop and Spark is built. By using the functional network and the AIC criteria, a distributed adaptive auto-regressive algorithm is proposed for deep mining of big data of tests on dilative soils. Based on the big data characteristic relationship of each plastic coefficient, combined with its significant and secondary influence factors, the constitutive model for dilative soils is established based on the theory of generalized plastic mechanics. Through the model verification experiments, the results show that the proposed model is better than the modified Cambridge model and the similar Cambridge model considering the dilatancy, and has strong adaptability to the expression of the mechanical properties of the dilative soils under different stress paths. The big data technology and generalized plastic mechanics are applied to the studies on the constitutive relationship of soils, which effectively breaks through the shackles of the traditional constitutive theory, and is of more extensive theoretical significance. At the same time, it also provides a new idea for the studies on the constitutive relationship of soils.
  • [1]
    杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报, 2018, 40(8): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm

    YANG Guang-hua. Review and prospect of modern soil constitutive theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm
    [2]
    ROSCOE K H, SCHOFIELD A, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
    [3]
    殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988(4): 64-71. doi: 10.3321/j.issn:1000-4548.1988.04.007

    YIN Zong-ze. A double yield surface stress-strain model of soil[J]. Chinese Journal of Geotechnical Engineering, 1988(4): 64-71. (in Chinese) doi: 10.3321/j.issn:1000-4548.1988.04.007
    [4]
    李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 25(1): 1-10. doi: 10.3321/j.issn:1000-4548.2006.01.001

    LI Guang-xin. Tsinghua elastoplastic model of soil and its development[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(1): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.01.001
    [5]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023

    YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
    [6]
    刘元雪, 郑颖人. 高等岩土塑性力学[M]. 北京: 科学出版社, 2019.

    LIU Yuan-xue, ZHENG Ying-ren. Plastic Mechanics of Geomaterial[M]. Beijing: Science Press, 2019. (in Chinese)
    [7]
    陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm

    CHEN Yun-min, MA Peng-cheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
    [8]
    赵成刚, 张雪东, 郭漩. 土的本构方程与热力学力学[J]. 力学进展, 2006, 36(4): 611-618. doi: 10.3321/j.issn:1000-0992.2006.04.012

    ZHAO Cheng-gang, ZHANG Xue-dong, GUO Xuan. Constitutive equation and thermodynamics of soil[J]. Advances in Mechanics, 2006, 36(4): 611-618. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.012
    [9]
    CHAO S, FENG Y. Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era[J]. Engineering, 2019, 15(6): 231-239.
    [10]
    曾静, 王靖涛. 土的本构关系的数值建模方法[J]. 岩石力学与工程学报, 2002(增刊2): 2336-2340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm

    ZENG Jing, WANG Jing-tao. Numerical modeling method of soil constitutive relation[J]. Journal of Rock Mechanics and Engineering, 2002(S2): 2336-2340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm
    [11]
    BANIMAHD A, YASROBI S S, WOODWARD P K. Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification[J]. Computers and Geotechnics, 2005, 32(5): 377-386. doi: 10.1016/j.compgeo.2005.06.002
    [12]
    ZHOU W H, TAN F, YUEN K V. Model updating and uncertainty analysis for creep behavior of soft soil[J]. Computers and Geotechnics, 2018, 100(12): 135-143.
    [13]
    BONTE C, VERCAUTEREN F. Privacy-preserving logistic regression training[J]. BMC Medical Genomics, 2018, 11(4): 86-93.
    [14]
    ALI K, KAMRAN M. Design of a vertical search engine for synchrotron data: a big data approach using Hadoop ecosystem[J]. SN Applied Sciences, 2019, 1(12): 341-347.
    [15]
    Mohamed SUAD, Mutaher FADL. Intrusion detection model using machine learning algorithm on Big Data environment[J]. Journal of Big Data, 2018, 5(1): 1-12. doi: 10.1186/s40537-017-0110-7
    [16]
    周永权, 赵斌, 焦李成. 基于泛函网络的多维函数逼近理论及学习算法[J]. 系统工程与电子技术, 2005, 27(5): 906-909. doi: 10.3321/j.issn:1001-506X.2005.05.038

    ZHOU Yong-quan, ZHAO Bin, JIAO Li-chen. Theory and learning algorithm of multi-dimensional function approximation based on functional networks[J]. Systems Engineering and Electronics, 2005, 27(5): 906-909. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.05.038
    [17]
    肖倩, 周永权, 陈振. 基函数可递归的泛函神经元网络学习算法[J]. 计算机科学, 2013, 40(1): 203-207. doi: 10.3969/j.issn.1002-137X.2013.01.047

    XIAO Qian, ZHOU Yong-quan, CHEN Zhen. Functional network learning algorithm with recursively base functions[J]. Computer Science, 2013, 2013, 40(1): 203-207. (in Chinese) doi: 10.3969/j.issn.1002-137X.2013.01.047
    [18]
    SATOSHI K, YUTA Y. AIC for the group Lasso in generalized linear models[J]. Japanese Journal of Statistics and Data Science, 2019, 2(2): 545-558. doi: 10.1007/s42081-019-00052-0
    [19]
    RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334: 1518-1524. doi: 10.1126/science.1205438
    [20]
    杨光华, 温勇, 钟志辉. 基于广义位势理论的类剑桥模型[J]. 岩土力学, 2013, 34(6): 1521-1528. doi: 10.16285/j.rsm.2013.06.002

    YANG Guang-hua, WEN Yong, ZHONG Zhi-hui. Similar cam-clay model based on generalized potential theory[J]. Rock and Soil Mechanics, 2013, 34(6): 1521-1528. (in Chinese) doi: 10.16285/j.rsm.2013.06.002
    [21]
    盛佳韧. 上海黏土力学特性综合试验研究及本构模拟[D]. 上海: 上海交通大学, 2012.

    SHENG Jia-ren. Comprehensive Experimental Study and Constitutive Simulation on mechanical Properties of Shanghai Clay[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
  • Related Articles

    [1]GUO Wanli, CAI Zhengyin, ZHU Jungao. Three state variables-related constitutive model for coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 234-242. DOI: 10.11779/CJGE20230372
    [2]ZHAO Shougang, LI Na, HE Xianfeng. Experimental study on mechanical properties and constitutive relation of CSG materials[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 230-233, 248. DOI: 10.11779/CJGE2023S10033
    [3]YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, HE Shao-qi. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. DOI: 10.11779/CJGE202003013
    [4]SHI Yu-cheng, QIU Guo-rong. Constitutive relation of seismic subsidence of loess based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 7-11.
    [5]ZHOU Jianting, LIU Yuanxue. Constitutive model for isotropic damage of geomaterial[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1636-1641.
    [6]YIN Zongze, ZHOU Jian, CHIU C F, YUAN Junping, ZHANG Kunyong. Constitutive relations and deformation calculation for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 137-146.
    [7]CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864.
    [8]LIU Yachen, CAI Yongqing, LIU Quansheng, WU Yushan. Thermal-hydraulic-mechanical coupling constitutive relation of rock mass fracture interconnectivity[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 196-200.
    [9]Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.
    [10]Zhong Xiaoxiong, Yuan Jianxin. Microfabrics and Constitutive Relations of Granular Materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(S1): 39-48.
  • Cited by

    Periodical cited type(22)

    1. 赫连腾,张丰涛. 快掘扰动下巷道围岩变形控制技术研究. 现代矿业. 2024(02): 210-213 .
    2. 双海清,辛越强,李树刚,林海飞,周斌,尚英智,刘思博. 基于关键层理论的切顶留巷下覆岩裂隙分布特征研究. 煤炭科学技术. 2024(05): 102-113 .
    3. 李鹏飞. 近距离煤层采空区下开采底板破坏规律研究. 山东煤炭科技. 2024(06): 123-127+133 .
    4. 王俊超. 强矿压永久巷道支护失效分析与多层次耦合控制对策. 煤炭与化工. 2024(10): 6-11 .
    5. 弓海军,刘一洪,赵洪宝,李岳,荆士杰. 采场底板裂隙扩展的分区特征及其临界应力条件. 中国矿业大学学报. 2024(06): 1132-1143 .
    6. 黄琪嵩,许波,冯俊军,林晓飞,程久龙,彭俊. 考虑顶板断裂动载作用的采场底板破坏深度研究. 煤田地质与勘探. 2024(12): 13-24 .
    7. 卢方超,张学博,高建良. 倾斜特厚煤层上分层开采时下分层煤体载荷及渗透率演化规律研究. 矿业安全与环保. 2023(02): 14-20 .
    8. 韩宇峰,王兆会,唐岳松. 大采高工作面支架刚度对煤壁稳定性的影响效应研究. 煤炭科学技术. 2023(03): 1-9 .
    9. 孟川杰. 基于虚拟影像探查的深部裂隙岩体储水分布探测研究. 中国测试. 2022(03): 53-58 .
    10. 池秀文,谢宇,陈东方,汪宗英,邓学翰,赵龙. 基于颗粒流的层状矿岩细观参数标定研究. 矿业研究与开发. 2022(10): 113-118 .
    11. 兰红,郑禄林,陈庆港,林健云,邱青,赵禹,田友稳. 动静载荷下含软弱夹层巷道围岩稳定性分析. 煤矿安全. 2022(12): 241-246+252 .
    12. 李巍,阮泽宇,郭亚超,吴来伟,张鹏,余宏. 基于数值模拟分析的上邻近煤层底板损伤特征研究. 矿业研究与开发. 2021(03): 70-74 .
    13. 岳喜占,涂敏,李迎富,张劲松,高亮. 近距离煤层开采遗留边界煤柱下底板巷道采动附加应力计算. 采矿与安全工程学报. 2021(02): 246-252+259 .
    14. 杨鹏,杨伟峰,张鑫全,王振荣,杨茂林. 基于信息熵的采动覆岩应力动态演化与水害辨识. 煤炭学报. 2021(09): 3006-3014 .
    15. 曹淑良,杨林,陈健. 华恒矿业双大巷跨采技术及巷道加固支护效果分析. 现代矿业. 2020(01): 73-76+82 .
    16. 庞义辉,王国法,李冰冰. 深部采场覆岩应力路径效应与失稳过程分析. 岩石力学与工程学报. 2020(04): 682-694 .
    17. 孙艺丹,杨逾,孙博一,李珉,孙浩翔. 动力扰动下巷道围岩变形影响因素敏感性分析. 煤炭科学技术. 2020(05): 57-62 .
    18. 杨逾,孙艺丹,张国赟. 动载下巷道围岩微震响应特征及支护研究. 中国安全生产科学技术. 2020(06): 73-79 .
    19. 杨仁树,朱晔,李永亮,李炜煜. 层状岩体中巷道底板应力分布规律及损伤破坏特征. 中国矿业大学学报. 2020(04): 615-626+645 .
    20. 毕鹏,魏文胜. 赵固二矿非对称底鼓破坏规律研究. 煤. 2020(10): 8-11+14 .
    21. 牛田瑞,陈健,曹峰. 近距离煤层采动及构造对预掘工作面回撤通道的影响. 煤炭科学技术. 2020(S2): 47-52 .
    22. 谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报. 2019(05): 1283-1305 .

    Other cited types(20)

Catalog

    Article views (274) PDF downloads (159) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return