Citation: | YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015 |
[1] |
杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报, 2018, 40(8): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm
YANG Guang-hua. Review and prospect of modern soil constitutive theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm
|
[2] |
ROSCOE K H, SCHOFIELD A, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
|
[3] |
殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988(4): 64-71. doi: 10.3321/j.issn:1000-4548.1988.04.007
YIN Zong-ze. A double yield surface stress-strain model of soil[J]. Chinese Journal of Geotechnical Engineering, 1988(4): 64-71. (in Chinese) doi: 10.3321/j.issn:1000-4548.1988.04.007
|
[4] |
李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 25(1): 1-10. doi: 10.3321/j.issn:1000-4548.2006.01.001
LI Guang-xin. Tsinghua elastoplastic model of soil and its development[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(1): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.01.001
|
[5] |
姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023
YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
|
[6] |
刘元雪, 郑颖人. 高等岩土塑性力学[M]. 北京: 科学出版社, 2019.
LIU Yuan-xue, ZHENG Ying-ren. Plastic Mechanics of Geomaterial[M]. Beijing: Science Press, 2019. (in Chinese)
|
[7] |
陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
CHEN Yun-min, MA Peng-cheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
|
[8] |
赵成刚, 张雪东, 郭漩. 土的本构方程与热力学力学[J]. 力学进展, 2006, 36(4): 611-618. doi: 10.3321/j.issn:1000-0992.2006.04.012
ZHAO Cheng-gang, ZHANG Xue-dong, GUO Xuan. Constitutive equation and thermodynamics of soil[J]. Advances in Mechanics, 2006, 36(4): 611-618. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.012
|
[9] |
CHAO S, FENG Y. Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era[J]. Engineering, 2019, 15(6): 231-239.
|
[10] |
曾静, 王靖涛. 土的本构关系的数值建模方法[J]. 岩石力学与工程学报, 2002(增刊2): 2336-2340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm
ZENG Jing, WANG Jing-tao. Numerical modeling method of soil constitutive relation[J]. Journal of Rock Mechanics and Engineering, 2002(S2): 2336-2340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm
|
[11] |
BANIMAHD A, YASROBI S S, WOODWARD P K. Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification[J]. Computers and Geotechnics, 2005, 32(5): 377-386. doi: 10.1016/j.compgeo.2005.06.002
|
[12] |
ZHOU W H, TAN F, YUEN K V. Model updating and uncertainty analysis for creep behavior of soft soil[J]. Computers and Geotechnics, 2018, 100(12): 135-143.
|
[13] |
BONTE C, VERCAUTEREN F. Privacy-preserving logistic regression training[J]. BMC Medical Genomics, 2018, 11(4): 86-93.
|
[14] |
ALI K, KAMRAN M. Design of a vertical search engine for synchrotron data: a big data approach using Hadoop ecosystem[J]. SN Applied Sciences, 2019, 1(12): 341-347.
|
[15] |
Mohamed SUAD, Mutaher FADL. Intrusion detection model using machine learning algorithm on Big Data environment[J]. Journal of Big Data, 2018, 5(1): 1-12. doi: 10.1186/s40537-017-0110-7
|
[16] |
周永权, 赵斌, 焦李成. 基于泛函网络的多维函数逼近理论及学习算法[J]. 系统工程与电子技术, 2005, 27(5): 906-909. doi: 10.3321/j.issn:1001-506X.2005.05.038
ZHOU Yong-quan, ZHAO Bin, JIAO Li-chen. Theory and learning algorithm of multi-dimensional function approximation based on functional networks[J]. Systems Engineering and Electronics, 2005, 27(5): 906-909. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.05.038
|
[17] |
肖倩, 周永权, 陈振. 基函数可递归的泛函神经元网络学习算法[J]. 计算机科学, 2013, 40(1): 203-207. doi: 10.3969/j.issn.1002-137X.2013.01.047
XIAO Qian, ZHOU Yong-quan, CHEN Zhen. Functional network learning algorithm with recursively base functions[J]. Computer Science, 2013, 2013, 40(1): 203-207. (in Chinese) doi: 10.3969/j.issn.1002-137X.2013.01.047
|
[18] |
SATOSHI K, YUTA Y. AIC for the group Lasso in generalized linear models[J]. Japanese Journal of Statistics and Data Science, 2019, 2(2): 545-558. doi: 10.1007/s42081-019-00052-0
|
[19] |
RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334: 1518-1524. doi: 10.1126/science.1205438
|
[20] |
杨光华, 温勇, 钟志辉. 基于广义位势理论的类剑桥模型[J]. 岩土力学, 2013, 34(6): 1521-1528. doi: 10.16285/j.rsm.2013.06.002
YANG Guang-hua, WEN Yong, ZHONG Zhi-hui. Similar cam-clay model based on generalized potential theory[J]. Rock and Soil Mechanics, 2013, 34(6): 1521-1528. (in Chinese) doi: 10.16285/j.rsm.2013.06.002
|
[21] |
盛佳韧. 上海黏土力学特性综合试验研究及本构模拟[D]. 上海: 上海交通大学, 2012.
SHENG Jia-ren. Comprehensive Experimental Study and Constitutive Simulation on mechanical Properties of Shanghai Clay[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
|
[1] | GUO Wanli, CAI Zhengyin, ZHU Jungao. Three state variables-related constitutive model for coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 234-242. DOI: 10.11779/CJGE20230372 |
[2] | ZHAO Shougang, LI Na, HE Xianfeng. Experimental study on mechanical properties and constitutive relation of CSG materials[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 230-233, 248. DOI: 10.11779/CJGE2023S10033 |
[3] | YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, HE Shao-qi. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. DOI: 10.11779/CJGE202003013 |
[4] | SHI Yu-cheng, QIU Guo-rong. Constitutive relation of seismic subsidence of loess based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 7-11. |
[5] | ZHOU Jianting, LIU Yuanxue. Constitutive model for isotropic damage of geomaterial[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1636-1641. |
[6] | YIN Zongze, ZHOU Jian, CHIU C F, YUAN Junping, ZHANG Kunyong. Constitutive relations and deformation calculation for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 137-146. |
[7] | CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864. |
[8] | LIU Yachen, CAI Yongqing, LIU Quansheng, WU Yushan. Thermal-hydraulic-mechanical coupling constitutive relation of rock mass fracture interconnectivity[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 196-200. |
[9] | Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387. |
[10] | Zhong Xiaoxiong, Yuan Jianxin. Microfabrics and Constitutive Relations of Granular Materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(S1): 39-48. |