• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MOU Lin, DONG Shu-ning, ZHENG Shi-tian, LI Ang, DING Xue-song. Numerical simulation of construction of water-blocking wall based on CFD-DEM coupling method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 481-491. DOI: 10.11779/CJGE202103011
Citation: MOU Lin, DONG Shu-ning, ZHENG Shi-tian, LI Ang, DING Xue-song. Numerical simulation of construction of water-blocking wall based on CFD-DEM coupling method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 481-491. DOI: 10.11779/CJGE202103011

Numerical simulation of construction of water-blocking wall based on CFD-DEM coupling method

More Information
  • Received Date: April 12, 2020
  • Available Online: December 04, 2022
  • The process of filling aggregate to block hydrodynamic pathway has been explored in an empirical way for a long time. A numerical model (CFD-DEM) is established to study the mechanism of water closure. By simulating the settling velocity of aggregate particles in water, the starting velocity under different stacking thicknesses, the accumulation angle in natural state and hydrostatic water, the particle size partition effect in dynamic water and the pressure suppression capability of each particle group, the applicability of the model is verified. The carrying capacity of the flow is tested, and the flow field between the unconnected top area and the accumulation area corresponds to the upper limit of the starting velocity. When the carrying capacity of the flow field is much smaller than the aggregate-filling speed, it is easy to connect the top, and vice versa. The model considering water inrush channel, pressure, aggregate-filling speed, aggregate size, filling sequence, aggregate friction parameters and viscous flow of water is established to simulate the main stages of paving, filling and roofing of aggregate in hydrodynamic pathway, and the evolution process of velocity and pressure at different stages is obtained. A double-pathway closure model is established to simulate the two kinds of aggregate-filling schemes, and it is proved that giving priority to blocking one of the pathways is more reasonable. Finally, the processes of "early connection", "late superimposition" and "reverse growth" are summarized, and the effects of hydraulic gradient and carrying of flow capacity on accumulation length and number of boreholes are analyzed. The model for filling aggregate in hydrodynamic pathway provides a new research method for the process of closure.
  • [1]
    王威. 动水条件下堵巷截流技术与阻水段阻水能力研究[D]. 北京: 煤炭科学研究总院, 2012.

    WANG Wei. Study on Techniques of Roadway-Blocking & Flow-Cutting off under Hydrodynamic Conditions and Capability Evaluation of Water-Blocking Segment[D]. Beijing: China Coal Science Research Institute, 2012. (in Chinese)
    [2]
    何思源. 开滦范各庄矿岩溶陷落柱特大突水灾害的治理[J]. 煤田地质与勘探, 1986, 2: 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT198602009.htm

    HE Si-yuan. Treatment of thekarst collapse columndisaster in Fangezhuang mine[J]. Coal Geology & Exploration, 1986, 2: 35-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT198602009.htm
    [3]
    王则才. 国家庄煤矿8101工作面动水注浆堵水技术[J]. 煤田地质与勘探, 2004, 4: 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200404009.htm

    WANG Ze-cai. Grouting technique for water-shut-off under water-flowing conditions in No.8101 work-face, Guojiazhuang Coal Mine[J]. Coal Geology & Exploration, 2004, 4: 26-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT200404009.htm
    [4]
    刘建功, 赵庆彪, 白忠胜, 等. 东庞矿陷落柱特大突水灾害快速治理[J]. 煤炭科学技术, 2005, 33(5): 4-7. doi: 10.3969/j.issn.0253-2336.2005.05.002

    LIU Jian-gong, ZHAO Qing-biao, BAI Zhong-sheng, et al. Rapid holding and control for special large water inrushfrom sinkhole in Dongpang Mine[J]. Coal Science and Technology, 2005, 33(5): 4-7. (in Chinese) doi: 10.3969/j.issn.0253-2336.2005.05.002
    [5]
    南生辉. 综合注浆法建造阻水墙技术[J]. 煤炭工程, 2010, 6: 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201006014.htm

    NAN Sheng-hui. Construction technology of water blocking wall by comprehensive grouting method[J]. Coal Engineering, 2010, 6: 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201006014.htm
    [6]
    邵红旗, 王维. 双液注浆法快速建造阻水墙封堵突水巷道[J]. 煤矿安全, 2011, 42(11): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201111013.htm

    SHAO Hong-qi, WANG Wei. Fast construction of water blocking wall by double liquid grouting[J]. Safety in Coal Mines, 2011, 42(11): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201111013.htm
    [7]
    姬中奎. 矿井特大突水巷道动水截流钻探技术研究[J]. 煤炭技术, 2014, 33(5): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405004.htm

    JI Zhong-kui. Research on drilling technology for roadway cut-off in water inrush coal mine[J]. Coal Technology, 2014, 33(5): 12-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201405004.htm
    [8]
    惠爽. 矿井淹没巷道多孔灌注骨料封堵模拟试验[D]. 北京: 中国矿业大学, 2018.

    HUI Shuang. An Experimental Investigation on Pouring Aggregate to Plug an Inundated Mine Tunnel Through Boreholes[D]. Beijing: China University of Mining and Technology, 2018. (in Chinese)
    [9]
    李维欣. 圆型过水巷道骨料灌注模拟试验[D]. 徐州: 中国矿业大学, 2016.

    LI Wei-xin. An Experimental Simulation on Aggregate Filling to Horizontal Circular Tunnel with Flowing Water[D]. Xuzhou: China University of Mining and Technology, 2016. (in Chinese)
    [10]
    El SHAMY U, ZEGHAL M. Coupled continuum-discrete model for saturated granular soils[J]. Journal of Engineering Mechanics, 2005, 131(4): 413-426.
    [11]
    周健, 周凯敏, 姚志雄, 等. 砂土管涌-滤层防治的离散元数值模拟[J]. 水利学报, 2010, 41(1): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201001005.htm

    ZHOU Jian, ZHOU Kai-min, YAO Zhi-xiong, et al. Numerical simulation of piping-filter prevention in sandy soil by discrete element method[J]. Journal of Hydraulic Engineering, 2010, 41(1): 17-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201001005.htm
    [12]
    ZHOU J, LI Y X, JIA M C, et al. Numerical simulation of failure behavior of granular debris flows based on flume model tests[J]. The Scientific World Journal, 2013: 603130.
    [13]
    罗勇, 龚晓南, 吴瑞潜. 颗粒流模拟和流体与颗粒相互作用分析[J]. 浙江大学学报(工学版), 2007, 41(11): 1932-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200711032.htm

    LUO Yong, GONG Xiao-nan, WU Rui-qian. Analysis and simulation of fluid-particles interaction with particle flow code[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(11): 1932-1936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200711032.htm
    [14]
    王胤, 艾军, 杨庆. 考虑粒间滚动阻力的CFD-DEM流-固耦合数值模拟方法[J]. 岩土力学, 2017, 38(6): 1771-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm

    WANG Yin, AI Jun, YANG Qing. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance[J]. Rock and Soil Mechanics, 2017, 38(6): 1771-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm
    [15]
    蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm

    JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
    [16]
    景路, 郭颂怡, 赵涛. 基于流体动力学-离散单元耦合算法的海底滑坡动力学分析[J]. 岩土力学, 2019, 40(1): 388-394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901041.htm

    JING Lu, GUO Song-yi, ZHAO Tao. Understanding dynamics of submarine landslide with coupled CFD-DEM[J]. Rock and Soil Mechanics, 2019, 40(1): 388-394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901041.htm
    [17]
    刘卡, 高辰龙, 周玉. 基于CFD-DEM方法的水下抛石运动模拟研究[J]. 中国水运:航道科技, 2016, 6: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHD201606002.htm

    LIU Ka, GAO Chen-long, ZHOU Yu. Simulation of underwater riprap motion based on CFD-DEM method[J]. China Water Transport: Channel Technology, 2016, 6: 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYHD201606002.htm
    [18]
    苏东升. 基于CFD-DEM耦合模拟方法的水流泥沙运动研究[D]. 天津: 天津大学, 2016.

    SU Dong-sheng. Investigation of Fluid-Sediment Particle Motion Based on CFD-DEM Coupling Simulation Method[D]. Tianjin: Tianjin University, 2016. (in Chinese)
    [19]
    邵兵, 闫怡飞, 毕朝峰, 等. 基于CFD-DEM耦合模型的大粒径非常规岩屑颗粒运移规律研究[J]. 科学技术与工程, 2017, 17(27): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201727031.htm

    SHAO Bing, YAN Yi-fei, BI Chao-feng, et al. Migration of irregular cuttings particles in big size by CFD-DEM couplingmodel[J]. Science Technology and Engineering, 2017, 17(27): 190-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201727031.htm
    [20]
    黄文博, 李潭秋, 杨润泽, 等. 基于CFD-DEM的颗粒填充床压力下降仿真和实验验证[J]. 航天医学与医学工程, 2018, 31(5): 526-531. https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB201805007.htm

    HUANG Wen-bo, LI Tan-qiu, YANG Run-ze, et al. Simulation and experimental validation of pressure drop in packed bed based on CFD-DEM[J]. Space Medicine & Medical Engineering, 2018, 31(5): 526-531. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB201805007.htm
    [21]
    CHENG N S. Comparison of formulas for drag coefficient and settling velocity of spherical particles[J]. Powder Technology, 2009, 189(3): 395-398.
    [22]
    BROWN P P, LAWLER D F. Sphere drag and settling velocity revisited[J]. Journal of Environmental Engineering, 2003, 129(3): 222-231.
    [23]
    何文社, 方铎, 杨具瑞, 等. 泥沙起动流速研究[J]. 水利学报, 2002, 10: 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200210008.htm

    HE Wen-she, FANG Duo, YANG Ju-rui, et al. Study on incipient velocity of sediment[J]. Journal of Hydraulic Engineering, 2002, 10: 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200210008.htm

Catalog

    Article views (299) PDF downloads (220) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return