• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xiao-ling, LI Xiu-yu, DU Xiu-li. Hyperbolic model for estimating liquefaction potential of sand considering the influences of fine grains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 448-455. DOI: 10.11779/CJGE202103007
Citation: ZHANG Xiao-ling, LI Xiu-yu, DU Xiu-li. Hyperbolic model for estimating liquefaction potential of sand considering the influences of fine grains[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 448-455. DOI: 10.11779/CJGE202103007

Hyperbolic model for estimating liquefaction potential of sand considering the influences of fine grains

More Information
  • Received Date: May 08, 2020
  • Available Online: December 04, 2022
  • In the evaluation models for seismic liquefaction of sand, most models are proposed for the liquefaction potential of clean sand, and the influence of fine grain content is often ignored. However, the fine grain content is an important factor of soil liquefaction, and it will result in the conservative result if neglected. Based on the previous liquefaction data in the mainland of China and the standard penetration test data of Chi-Chi earthquake in Taiwan of China, the modified coefficient of influence term of fine grains is proposed, and the hyperbolic model of liquefaction evaluation for fine-grained sand is established. The proposed model is applied to the data for estimating, and its success rate is discussed. Finally, the model is examined by the large seismic liquefaction data set, and its validity and applicability are verified by comparing with the standard method. The results show the proposed modified liquefaction hyperbolic model is applicable to the liquefaction evaluation of soils in the areas with different intensities, and can effectively estimate liquefaction of sand within the soil depth of 20 m. The proposed correction coefficient of fine grain content in sand can make up for the limitation of the application range of the hyperbolic model for liquefaction evaluation, and on the basis of keeping the evaluation success rate for liquefaction samples, the evaluation success rate for non-liquefaction samples is improved.
  • [1]
    SEED H B, IDRISS I M, ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    [2]
    SEED H B, IDRISS I M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of Soil Mechanics and Foundations Division, 1971, 97(9): 1249-1273. doi: 10.1061/JSFEAQ.0001662
    [3]
    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironment Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    [4]
    IDRISS I M, BOULANGER R W. SPT-based Liquefaction Triggering Procedures[R]. Davis: University of California, 2010.
    [5]
    CHEN G X, XU L Y, KONG M Y, et al. Calibration of a CRR model based on an expanded SPT-based database for assessing soil liquefaction potential[J]. Engineering Geology, 2015, 196: 305-312. doi: 10.1016/j.enggeo.2015.08.002
    [6]
    陈国兴, 胡庆兴, 刘学珠. 关于砂土液化判别的若干意见[J]. 地震工程与工程振动, 2002, 22(1): 141-151. doi: 10.3969/j.issn.1000-1301.2002.01.023

    CHEN Guo-xing, HU Qing-xing, LIU Xue-zhu. Some comments on methodologies for estimating liquefaction of study soils[J]. Journal of Earthquake Engineering and Engineering Vibration, 2002, 22(1): 141-151. (in Chinese) doi: 10.3969/j.issn.1000-1301.2002.01.023
    [7]
    建筑抗震设计规范:GB 50011—2010[S]. 2016.

    Code for Seismic Design of Buildings: GB 50011—2010[S]. 2016. (in Chinese)
    [8]
    孙锐, 赵倩玉, 袁晓铭. 液化判别的双曲线模型[J]. 岩土工程学报, 2014, 36(11): 2061-2068. doi: 10.11779/CJGE201411012

    SUN Rui, ZHAO Qian-yu, YUAN Xiao-ming. Hyperbolic model for estimating liquefaction potential of sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2061-2068. (in Chinese) doi: 10.11779/CJGE201411012
    [9]
    马利超. 高黏粒含量砂性土液化可能性与动强度评价研究[D]. 杭州: 浙江大学, 2017.

    MA Li-chao. The Liquefaction Susceptibility and Assessment of Dynamical Resistance in High Clay Content Sand[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [10]
    陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2): 507-516. doi: 10.16285/j.rsm.2016.02.024

    CHEN Yu-long, ZHANG Yu-ning. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2): 507-516. (in Chinese) doi: 10.16285/j.rsm.2016.02.024
    [11]
    董林, 王兰民, 夏坤, 等. 含细粒砂性土标贯液化判别方法改进研究[J]. 岩土工程学报, 2015, 37(12): 2320-2325. doi: 10.11779/CJGE201512024

    DONG Lin, WANG Lan-min, XIA Kun, et al. Improvement of SPT-based liquefaction discrimination methods for fines-containing sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2320-2325. (in Chinese) doi: 10.11779/CJGE201512024
    [12]
    钟龙辉. 轻亚黏土地震液化判定方法的分析[J]. 岩土工程学报, 1980, 2(3): 113-122. doi: 10.3321/j.issn:1000-4548.1980.03.013

    ZHONG Long-hui. Analysis for evaluating liquefaction of low plasticity clays(CL) during earthquake[J]. Chinese Journal of Geotechnical Engineering, 1980, 2(3): 113-122. (in Chinese) doi: 10.3321/j.issn:1000-4548.1980.03.013
    [13]
    SEED H B, TOKIMATSU K, HARDER L F, et al. The influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12): 1425-1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)
    [14]
    刘颖. 关于修改抗震规范砂土液化判别式问题再同谢君斐同志商榷[J]. 地震工程与工程振动, 1986, 6(1): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198601008.htm

    LIU Ying. Discuss with Xie Junfei again about the problem of the formular estimating the liquefaction of sand in revised aseismic design code[J]. Journal of Earthquake Engineering and Engineering Vibration, 1986, 6(1): 82-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198601008.htm
    [15]
    谢君斐. 关于修改抗震规范砂土液化判别式的几点意见[J]. 地震工程与工程振动, 1984, 4(2): 95-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198402007.htm

    XIE Jun-fei. Some comments on the formular estimating the liquefaction of sand in revised aseismic design code[J]. Journal of Earthquake Engineering and Engineering Vibration, 1984, 4(2): 95-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198402007.htm
    [16]
    HWANG J H, YANG C W. Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data[J]. Soil Dynamics and Earthquake Engineering, 2001, 21: 237-257. doi: 10.1016/S0267-7261(01)00002-1
    [17]
    CETIN K O, SEED R B, KAYEN R E, et al. Dataset on SPT-based seismic soil liquefaction[J]. Data in Brief, 2018, 20: 544-548. doi: 10.1016/j.dib.2018.08.043
    [18]
    中国科学院工程软科学研究所. 地震工程研究报告集[M]. 第三集. 北京: 科学出版社, 1977.

    Institute of Soft Science of Engineering, Chinese Academy of Sciences. A Collection of Seismic Engineering Research Reports[M]. The Third Set. Beijing: Science Press, 1977. (in Chinese)
    [19]
    谢定义. 动荷载下土的强度特性[J]. 水利学报, 1987, 12: 17-32. https://cdmd.cnki.com.cn/Article/CDMD-10712-1018954775.htm

    XIE Ding-yi. Strength characteristics of soils under dynamic loading[J]. Journal of Hydraulic Engineering, 1987, 12: 17-32. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10712-1018954775.htm

Catalog

    Article views (252) PDF downloads (177) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return