• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Mei-wan, ZHANG Qi-hua, GAO Li-ping, LUO Rong, LI Yu-jie, WANG Shuai, BIAN Zhi-hua. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346. DOI: 10.11779/CJGE202102014
Citation: YU Mei-wan, ZHANG Qi-hua, GAO Li-ping, LUO Rong, LI Yu-jie, WANG Shuai, BIAN Zhi-hua. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346. DOI: 10.11779/CJGE202102014

Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge

More Information
  • Received Date: May 22, 2018
  • Revised Date: May 28, 2020
  • Available Online: December 04, 2022
  • Tunnel anchorage of Jindong Bridge is built in the complicated rock stratum, but there is no similar engineering experience for reference. In order to analyze the bearing capacity of tunnel anchorage of Jindong Bridge, a model test tunnel is excavated on the side slope of the mountain at the upstream side of the real anchorage to make a tunnel anchorage model of 1∶11; then, the backstepping method is adopted to conduct the model tests, including elastic-plastic stage tests, creep tests and full-load overload tests, as well as the supporting tests such as physical mechanical property tests on rock mass (rock block) and acoustic wave tests on rock mass. The test results show that the character of the model anchorage rock mass is basically the same as that of the real anchorage, the acoustic wave of the surrounding rock of the model anchorage is lower than that of the real anchorage, and the stratum of the model anchorage has a better geological representation. The model anchorage exhibits the approximate elastic deformation under the action of 8 times the design load, and there is no creep under the long-term action of 6 times the design load. It is deduced that the surrounding rock of the real tunnel anchorage has the overload stability coefficient of more than 8 and the long-term safety stability coefficient of more than 6. The results can be used as the reference for the engineering design of similar complicated surrounding rock.
  • [1]
    夏才初, 程鸿鑫, 李荣强. 广东虎门大桥东锚碇现场结构模型试验研究[J]. 岩石力学与工程学报, 1997, 16(6): 571-576. doi: 10.3321/j.issn:1000-6915.1997.06.010

    XIA Cai-chu, CHENG Hong-xin, LI Rong-qiang. Testing study on field structure model of the east anchorage of Guangdong Humen Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6): 571-576. (in Chinese) doi: 10.3321/j.issn:1000-6915.1997.06.010
    [2]
    肖本职, 吴相超, 彭朝全. 重庆鹅公岩大桥隧道锚围岩稳定性[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5591-5597. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2057.htm

    XIAO Ben-zhi, WU Xiang-chao, PENG Chao-quan. Stability of the anchorage wall rock of tunnel for Chongqing Egongyan bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5591-5597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2057.htm
    [3]
    邬爱清, 彭元诚, 黄正加, 等. 超大跨度悬索桥隧道锚承载特性的岩石力学综合研究[J]. 岩石力学与工程学报, 2010, 29(3): 433-441. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003003.htm

    WU Ai-qing, PENG Yuan-cheng, HUANG Zheng-jia, et al. Rock mechanics comprehensive study of bearing capacity characteristics of tunnel anchorage for super-large span suspension bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 433-441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003003.htm
    [4]
    胡波, 曾钱帮, 饶旦, 等. 锚碇-围岩系统在拉剪复合应力条件下的变形规律及破坏机制研究-以坝陵河特大岩锚悬索桥为例[J]. 岩石力学与工程学报, 2007, 26(4): 712-719. doi: 10.3321/j.issn:1000-6915.2007.04.008

    HU Bo, ZENG Qian-bang, RAO Dan, et al. Study of deformation law and failure mechanism of anchorage-surrounding rock system under tensile-shear complex stresses -taking super-large suspension bridge on Baling river for example[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 712-719. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.04.008
    [5]
    张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究-抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501010.htm

    ZHANG Qi-hua, YU Mei-wan, YU Zheng-fu, et al. Field model tests on pullout capacity of tunnel-type anchorages of Puli bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501010.htm
    [6]
    蒋昱州, 王瑞红, 朱杰兵, 等. 伍家岗大桥隧道锚三维地质力学模型试验研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4103-4113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2071.htm

    JIANG Yu-zhou, WANG Rui-hong, ZHU Jie-bing. Geomechanical model test on global stability for Wujiagang bridge tunnel-type anchorages[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4103-4113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2071.htm
    [7]
    张宜虎, 邬爱清, 周火明, 等. 悬索桥隧道锚承载能力和变形特征研究综述[J]. 岩土力学, 2019, 40(9): 3576-3584. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909031.htm

    ZHANG Yi-hu, WU Ai-qing, ZHOU Huo-ming, et al. Review of bearing capacity and deformation characteristics of tunneltype anchorage for suspension bridge[J]. Rockand Soil Mechanics, 2019, 40(9): 3576-3584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909031.htm
    [8]
    江南, 冯君. 铁路悬索桥隧道锚受载破裂力学行为研究[J]. 岩石力学与工程学报, 2018, 37(7): 1665-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm

    JIANG Nan, FENG Jun. Damage behavior of tunnel-type anchorages of railway suspension bridges under loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1659-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm
    [9]
    李栋梁, 刘新荣, 吴相超, 等. 浅埋软岩隧道式锚碇稳定性原位模试验研究[J]. 岩土工程学报, 2017, 39(11): 2078-2087. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711018.htm

    LI Dong-liang, LIU Xin-rong, WU Xiang-chao, et al. Stability of shallow buried soft rock tunnel anchorage by in-situ model test[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2078-2087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201711018.htm
    [10]
    公路悬索桥设计规范:JTG/T D65-05--2015[S]. 北京: 人民交通出版社, 2015.

    Specification of design for highway suspension bridge: JTG/TD65-05--2015[S]. Beijing: China Communications Press, 2015. (in Chinese)
    [11]
    廖明进, 王全才, 袁从华, 等. 基于楔形效应的隧道锚抗拔承载能力研究[J]. 岩土力学, 2016, 37(1): 185-192, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm

    LIAO Ming-jin, WANG Quan-cai, YUAN Cong-hua, et al. Research on the pull-out capacity of the tunnel-type anchorage basedon wedge-effect[J]. Rock and Soil Mechanics, 2016, 37(1): 186-192, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm
    [12]
    江南, 黄林, 冯君, 等. 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009, 1047. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm

    JIANG Nan, HUANG Ling, FENG Jun, et al. Research on design and calculation method of tunnel-type anchorage of railway suspension bridge[J]. Rockand Soil Mechanics, 2020, 41(3): 999-1009, 1047. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm
    [13]
    张奇华, 李玉婕, 余美万, 等. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. 岩土力学, 2017, 38(3): 810-820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm

    ZHANG Qi-hua, LI Yu-jie, YU Mei-wan, et al. Preliminary study on pullout mechanisms and computational mode of pullout force for rocks surrounding tunnel-type anchorage[J]. Rockand Soil Mechanics, 2017, 38(3): 810-820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm
  • Related Articles

    [1]WU Yang, WU Yihang, MA Linjian, CUI Jie, LIU Jiankun, DAI Beibing. Experimental study on dynamic characteristics of calcareous sand-gravel mixtures from islands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 63-71. DOI: 10.11779/CJGE20221161
    [2]Experimental Study on Quick Detection of Moisture Content of Wide-Graded Gravel Soil Based on Microwave Humidity Method and Weighted Method[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240308
    [3]WU Ping, LING Xiaodong, SHI Beixiao, HE Ning. Experimental study on permeability characteristics of sandy gravel with high fines content[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 44-49. DOI: 10.11779/CJGE2023S10028
    [4]LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287
    [5]JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019
    [6]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [7]WU Qi, CHEN Guo-xing, ZHOU Zheng-long, HUANG Bo. Influences of fines content on cyclic resistance ratio of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. DOI: 10.11779/CJGE201706009
    [8]YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026
    [9]WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022
    [10]WANG Yuan-zhan, LIU Xu-fei, ZHANG Zhi-kai, MA Dian-guang, CUI Yan-qiang. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1405-1410. DOI: 10.11779/CJGE201508007

Catalog

    Article views (240) PDF downloads (127) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return