• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhi-guo, ZHANG Yang-bin, ZHANG Cheng-ping, WANG Zhi-wei, PAN Y T. Time-domain solution for soil feedback induced by shield tunneling in viscoelastic strata considering influences of surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 34-42. DOI: 10.11779/CJGE202101004
Citation: ZHANG Zhi-guo, ZHANG Yang-bin, ZHANG Cheng-ping, WANG Zhi-wei, PAN Y T. Time-domain solution for soil feedback induced by shield tunneling in viscoelastic strata considering influences of surcharge loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 34-42. DOI: 10.11779/CJGE202101004

Time-domain solution for soil feedback induced by shield tunneling in viscoelastic strata considering influences of surcharge loading

More Information
  • Received Date: November 18, 2019
  • Available Online: December 04, 2022
  • At present, the researches on the influences of deformation of surrounding soil induced by shield tunneling in soft soils are generally based on instantaneous excavation conditions, less considering the rheological characteristics of viscoelastic soils. Furthermore, little attention is paid to the impact of surcharge loading on the shield tunneling. From the perspective of viscoelastic foundation, the elliptical convergence deformation mode around tunnel cavity is introduced. Using the complex variable theory and the Laplace transform technique, the time-domain solution for displacement and stress of surrounding soils induced by shield tunneling is proposed under the influences of surcharge loading. Based on the relevant actual projects, the measured values are compared with the simplified analytical solutions, and good consistency is obtained. The results show that the time-domain solution can reflect the influences of shield tunneling on the displacements of surrounding soils under surcharge loading and the development trend of soil deformation with time. Under the influences of surcharge loading, the ground deformation due to tunneling continues to increase as time goes by while the changing rate of soil settlements shows a gradual decline until it reaches zero. The sudden alternation of surcharge loading causes the surface settlement, especially the settlement rate, to change significantly. The research results have certain theoretical guiding significance for tunnel construction controlling within the scope of viscous strata and dense buildings.
  • [1]
    柯宅邦, 梁荣柱, 童智能, 等. 地表堆载下盾构隧道纵向非线性变形简化解析解[J]. 岩土工程学报, 2019, 41(增刊1): 245-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1063.htm

    KE Zhai-bang, LIANG Rong-zhu, TONG Zhi-neng, et al. Simplified analytical solution for nonlinear longitudinal deformation of shield tunnels under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 245-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1063.htm
    [2]
    CELESTINO T B, GOMES R A M P, BORTOLUCCI A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology, 2000, 15(1): 97-100. doi: 10.1016/S0886-7798(99)00054-1
    [3]
    张成平, 张顶立, 骆建军, 等. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. 岩土力学, 2009, 30(6): 1861-1866. doi: 10.3969/j.issn.1000-7598.2009.06.058

    ZHANG Cheng-ping, ZHANG Ding-li, LUO Jian-jun, et al. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. Rock and Soil Mechanics, 2009, 30(6): 1861-1866. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.06.058
    [4]
    JALLOW A, OU C Y, LIM A. Three-dimensional numerical study of long-term settlement induced in shield tunneling[J]. Tunnelling and Underground Space Technology, 2019, 88(6): 221-236.
    [5]
    郑刚, 张扶正, 张天奇, 等. 盾构隧道开挖及补偿注浆对地层扰动影响的室内试验及数值模拟研究[J]. 岩土工程学报, 2016, 38(10): 1741-1753. doi: 10.11779/CJGE201610001

    ZHENG Gang, ZHANG Fu-zheng, ZHANG Tian-qi, et al. Disturbance of shield tunnel excavation and compensation grouting to surrounding soil: laboratory tests and numerical simulations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1741-1753. (in Chinese) doi: 10.11779/CJGE201610001
    [6]
    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
    [7]
    叶飞, 苟长飞, 陈治, 等. 盾构隧道同步注浆引起的地表变形分析[J]. 岩土工程学报, 2014, 36(4): 618-624. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404005.htm

    YE Fei, GOU Chang-fei, CHEN Zhi, et al. Ground surface deformation caused by synchronous grouting of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 618-624. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404005.htm
    [8]
    VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Géotechnique, 1996, 46(4): 753-756. doi: 10.1680/geot.1996.46.4.753
    [9]
    VERRUIJT A. Complex variable solution for a deforming circular tunnel in an elastic half plane[J]. Géotechnique, 1997, 21(4): 77-89.
    [10]
    VERRUIJT A. Deformation of an elastic half plane with a circular cavity[J]. International Journal of Solid and Structures, 1998, 35(21): 2795-2804. doi: 10.1016/S0020-7683(97)00194-7
    [11]
    王立忠, 吕学金. 复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报, 2007, 29(3): 319-327. doi: 10.3321/j.issn:1000-4548.2007.03.002

    WANG Li-zhong, LÜ Xue-jin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 319-327. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.03.002
    [12]
    傅鹤林, 张加兵, 袁维, 等. 基于复变理论的盾构隧道围岩位移预测分析[J]. 现代隧道技术, 2016, 53(2): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201602013.htm

    FU He-lin, ZHANG Jia-bing, YUAN Wei, et al. Elastic complex variable theory based prediction of shield tunnel surrounding rock displacement[J]. Modern Tunnelling Technology, 2016, 53(2): 86-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201602013.htm
    [13]
    LÜ A Z, ZHANG L Q, ZHANG N. Analytical stress solutions for a circular pressure tunnel at pressure and great depth including support delay[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 514-519. doi: 10.1016/j.ijrmms.2010.09.002
    [14]
    蔚立元, 陈晓鹏, 韩立军, 等. 基于复变函数方法的水下隧道围岩弹性分析[J]. 岩土力学, 2012, 33(增刊2): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2055.htm

    YU Li-yuan, CHEN Xiao-peng, HAN Li-jun, et al. Elastic analysis of surrounding rock for underwater tunnels based on function of variables method[J]. Rock and Soil Mechanics, 2012, 33(S2): 345-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2055.htm
    [15]
    韩凯航, 张成平, 王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报, 2014, 36(12): 2253-2259. doi: 10.11779/CJGE201412013

    HAN Kai-hang, ZHANG Cheng-ping, WANG Meng-shu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253-2259. (in Chinese) doi: 10.11779/CJGE201412013
    [16]
    KARGAR A R, RAHMANNEJAD R, HAJABASI M A. A semi-analytical elastic solution for stress field of lined non-circular tunnels at great depth using complex variable method[J]. International Journal of Solid and Structures, 2014, 51(6): 1475-482. doi: 10.1016/j.ijsolstr.2013.12.038
    [17]
    宋浩然, 张顶立, 房倩. 浅埋海底隧道的围岩应力解析解[J]. 土木工程学报, 2015, 48(增刊1): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1048.htm

    SONG Hao-ran, ZHANG Ding-li, FANG Qian. Analytic solution on the stress of surrounding rocks for shallow subsea tunnel[J]. Chinese Civil Engineering Journal, 2015, 48(S1): 283-288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S1048.htm
    [18]
    梁荣柱, 夏唐代, 胡军华, 等. 新建隧道近距离上穿对既有地铁隧道纵向变形影响分析[J]. 岩土力学, 2016, 37(增刊1): 391-399. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1051.htm

    LIANG Rong-zhu, XIA Tang-dai, HU Jun-hua, et al. Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance[J]. Rock and Soil Mechanics, 2016, 37(S1): 391-399. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1051.htm
    [19]
    魏纲, 张鑫海, 徐银锋. 考虑多因素的类矩形盾构施工引起土体竖向位移研究[J]. 岩石力学与工程学报, 2018, 37(1): 199-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801020.htm

    WEI Gang, ZHANG Xin-hai, XU Yin-feng. Deriving vertical displacement of ground due to quasi-rectangular shield tunneling considering multiple factors[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 199-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801020.htm
    [20]
    魏纲, 周杨侃. 随机介质理论预测近距离平行盾构引起的地表沉降[J]. 岩土力学, 2016, 37(增刊2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2013.htm

    WEI Gang, ZHOU Yang-kai. A simplified method for predicting ground settlement caused by adjacent parallel twin shield tunnel construction based on stochastic medium theory[J]. Rock and Soil Mechanics, 2016, 37(S2): 113-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2013.htm
    [21]
    KONG F C, LU D C, DU X L, et al. Displacement analytical prediction of shallow tunnel based on unified displacement function under slope boundary[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 183-211.
    [22]
    王华宁, 蒋明镜, 何平. 流变岩体中椭圆洞室断面开挖过程的力学分析[J]. 岩土工程学报, 2013, 35(11): 1979-1987. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311005.htm

    WANG Hua-ning, JIANG Ming-jing, HE Ping. Analytical solutions for elliptical tunnels in rheological rock considering excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1979-1987. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311005.htm
    [23]
    王华宁, 张玉栋, 蒋明镜. 流变岩土体中浅埋隧道围岩力学响应的理论解[J]. 力学季刊, 2016, 37(1): 22-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201601003.htm

    WANG Hua-ning, ZHANG Yu-dong, JIANG Ming-jing. Analytical solutions for shallow tunnel excavated in rheological geomaterial[J]. Chinese Quarterly of Mechanics, 2016, 37(1): 22-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201601003.htm
    [24]
    闫富有, 刘忠玉, 殷伟希. 黏弹性地基上厚筏基础蠕变沉降的耦合边界元法[J]. 岩土工程学报, 2012, 34(1): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201008.htm

    YAN Fu-you, LIU Zhong-yu, YIN Wei-xi. Coupled boundary element method for creep settlement of thick raft foundation on viscoelastic ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 94-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201008.htm
    [25]
    MESQUITA A D, CODA H B. A simple Kelvin and Boltzmann viscoelastic analysis of three-dimensional solids by the boundary element method[J]. Engineering Analysis with Boundary Elements, 2003, 27(9): 885-895.
    [26]
    MUSKHELISHVILI N I. Mathematical Theory of Elasticity[M]. Leyden: International Publishing, 1954.
    [27]
    TIMOSHENKO P, GOODIER J N. Theory of Elasticity[M]. New York: Mc Graw-Hill, 1970.
    [28]
    GONZALEZ C, SAGASETA C. Patterns of soil deformations around tunnels: application to the extension of Madrid Metro[J]. Computers and Geotechnics, 2001, 28(6): 445-468.
    [29]
    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846-856.
    [30]
    PARK K H. Analytical solution for tunnelling-induced ground movement in clays[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 249-261.
    [31]
    LEE K M, ROWE R K, LO K Y. Subsidence owing to tunneling: I estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.
    [32]
    CHOU W, BOBET A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology, 2002, 17(6): 3-19.
    [33]
    BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12): 1258-1266.
    [34]
    姜民. 盾构穿越新建海堤工后沉降研究[D]. 杭州: 浙江大学, 2010.

    JIANG Min. Study on Post-Construction Settlement of New-Built Sea Embankment after Tunnelling[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
  • Cited by

    Periodical cited type(10)

    1. 张岩,陈国兴,赵凯,方怡,彭艳菊. 考虑地层变异和趋势非线性的海床波速结构非平稳随机场模拟方法. 地球科学. 2024(11): 4225-4237 .
    2. 曾正强,蔡永昌,吴江斌. 基于局部耦合马尔科夫链模型的钻孔优化方法. 岩土工程学报. 2024(12): 2620-2628 . 本站查看
    3. 樊一凡,陈之毅. 基于优化选点的土层剪切波速随机性对地铁车站结构抗震性能的影响研究. 土木工程学报. 2023(08): 174-183 .
    4. 朱峻生,王胜,柏君,徐正宣,陈明浩,李昭淇,刘鑫,张自豪,刘兴倚. 基于改进KNN算法的有限钻孔预测全域地质特征的方法. 隧道建设(中英文). 2023(S2): 348-358 .
    5. 潘敏,邓志平,蒋水华. 基于边界模型和广义耦合马尔可夫链模型的地层变异性模拟方法. 地质科技通报. 2022(02): 176-186 .
    6. 邓辉,马雷,高迪,赵卫东,杨曼. 基于转移概率地质统计的淮南顾桥矿区松散层含水介质刻画. 现代地质. 2022(02): 602-609 .
    7. 缑变彩,夏阳,高名岳,王朋艳,王帆. 基于盾构数据驱动的地质条件动态预测. 土木工程与管理学报. 2022(03): 116-120 .
    8. 程利力,陈健,陈睿,魏林春. 基于二维马尔可夫链的武汉长江公铁隧道地层识别. 土木工程与管理学报. 2021(01): 169-174+182 .
    9. 张东明,代鉷锋,王慧,黄宏伟,胡群芳. 考虑地层变异的浅基础承载力分析. 地下空间与工程学报. 2020(05): 1412-1419 .
    10. 邓志平,牛景太,潘敏,彭友文,崔猛. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法. 岩土工程学报. 2019(06): 1083-1090 . 本站查看

    Other cited types(5)

Catalog

    Article views (255) PDF downloads (167) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return