• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XUE Peng, ZHOU Xian-qi, CAI Yan-yan, MA Lin-jian, LIAO Ren-guo, YU Jin. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255-260. DOI: 10.11779/CJGE2020S2045
Citation: XUE Peng, ZHOU Xian-qi, CAI Yan-yan, MA Lin-jian, LIAO Ren-guo, YU Jin. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255-260. DOI: 10.11779/CJGE2020S2045

Triaxial creep characteristics and empirical model for saturated coral sand

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • The riaxial drainage creep tests are performed on saturated coral sand under different cell pressures and deviator stress levels. The results show that the cell pressure and deviator stress have significant effects on creep deformation. The specific performance is that when the deviator stress is large or the cell pressure is small, the creep deformation is large, and the creep phenomenon is obvious. The traditional Singh-Mitchell and Mesri creep models are used to describe the creep characteristics of coral sand. It is found that the calculated results of the two models are quite different from the test results under high deviator stress conditions, which cannot accurately describe the creep behavior of the coral sand. By analyzing the reasons for the large error between the model and the test results, the stress-strain and strain-time relationships are expressed by hyperbolic functions, and a new creep model is established. The predicted results of the new model are in good agreement with the test results.
  • [1]
    叶剑红, 曹梦, 李刚. 中国南海吹填岛礁原状钙质砂蠕变特征初探[J]. 岩石力学与工程学报, 2019, 38(6): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906015.htm

    YE Jian-hong, CAO Meng, LI Gang. A preliminary study on the creep characteristics of the undisturbed calcareous sand of the reclamation islands and reefs in the South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1242-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906015.htm
    [2]
    彭宇, 丁选明, 肖杨, 等. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究[J]. 岩土力学, 2019, 40(7): 2663-2672. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm

    PENG Yu, DING Xuan-ming, XIAO Yang, et al. Research on the breaking characteristics of calcareous sand particles based on dyeing calibration and image particle segmentation[J]. Rock and Soil Mechanics, 2019, 40(7): 2663-2672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm
    [3]
    黄宏翔, 陈育民, 王建平, 等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39(6): 2082-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm

    HUANG Hong-xiang, CHEN Yu-min, WANG Jian-ping, et al. Annular shear test on the shear strength characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm
    [4]
    朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm

    ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Analysis of the structural characteristics of pores in calcareous sand particles[J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
    [5]
    袁庆盟, 孔亮, 赵亚鹏. 考虑水合物填充和胶结效应的深海能源土弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007017.htm

    YUAN Qing-meng, KONG Liang, ZHAO Ya-peng. Elastoplastic constitutive model of deep-sea energy soil considering hydrate filling and cementing effect[J]. Rock and Soil Mechanics, 2020, 41(7): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007017.htm
    [6]
    YAO Yang-ping, LIU Lin, LUO Ting, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343.
    [7]
    王艳芳, 蔡正银, 蔡燕燕, 等. 饱和土排水蠕变特性对比研究[J]. 应用基础与工程科学学报, 2017, 25(5): 985-997. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201705010.htm

    WANG Yan-fang, CAI Zheng-yin, CAI Yan-yan, et al. Comparative study on the creep characteristics of saturated soil drainage[J]. Journal of Applied Basic and Engineering Sciences, 2017, 25(5): 985-997. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201705010.htm
    [8]
    王艳芳, 蔡燕燕, 蔡正银. 饱和砂土蠕变特性实验[J]. 华侨大学学报(自然科学版), 2017, 38(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201701006.htm

    WANG Yan-fang, CAI Yan-yan, CAI Zheng-yin. Experiment on the creep characteristics of saturated sand[J]. Journal of Huaqiao University (Natural Science Edition), 2017, 38(1): 31-37. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201701006.htm
    [9]
    YIN J H, GRAHAM J. Elastic visco-plastic modeling of one-dimensional consolidation[J]. Géotechnique, 1996, 46: 515-527.
    [10]
    殷建华. 等效时间和岩土材料的弹黏塑性模型[J]. 岩石力学与工程学报, 1999, 18(2): 124-128.

    YIN Jian-hua. Equivalent time and elasto-viscoplastic model of geotechnical materials[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 124-128. (in Chinese)
    [11]
    袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6): 772-779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106004.htm

    YUAN Jing, GONG Xiao-nan, YI De-qing. Comparative research on rheological model of rock and soil[J]. Journal of Rock Mechanics and Engineering, 2001, 20(6): 772-779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106004.htm
    [12]
    张先伟, 王常明. 饱和软土的经验型蠕变模型[J]. 中南大学学报(自然科学版), 2011, 42(3): 791-796. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201103037.htm

    ZHANG Xian-wei, WANG Chang-ming. Empirical creep model of saturated soft soil[J]. Journal of Central South University (Natural Science Edition), 2011, 42(3): 791-796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201103037.htm
    [13]
    SINGH A, MITCHELL J K. General stress-strain-time function for clay[J]. Journal of the Clay Mechanics and Foundation Division, 1968, 94(SM1): 21-46.
    [14]
    MESRI G, REBRES-CORDERO E, SHIELDS D R, et al. Shear stress-strain-time behaviour of clays[J]. Géotechnique, 1981, 31: 537-552.
    [15]
    LIN H D, WANG C C. Stress-strain-time function of clay[J]. Journal of Geotechnical and Geoenviromental Engineering, 1998, 124(4): 289-296.
    [16]
    王常明, 王清, 张淑华. 滨海软土蠕变特性及蠕变模型[J]. 岩石力学与工程学报, 2004, 23(2): 227-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402009.htm

    WANG Chang-ming, WANG Qing, ZHANG Shu-hua. Creep characteristics and creep model of coastal soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 227-230. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402009.htm
    [17]
    卢萍珍, 曾静, 盛谦. 软黏土蠕变试验及其经验模型研究[J]. 岩土力学, 2008, 29(4): 1041-1044, 1052. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200804038.htm

    LU Ping-zhen, ZENG Jing, SHENG Qian. Research on creep test of soft clay and its empirical model[J]. Rock and Soil Mechanics, 2008, 29(4): 1041-1044, 1052. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200804038.htm
    [18]
    LADE P V, CARL D, LIGGIO J, et al. Strain rate, creep, and stress drop-creep experiments on crushed coral sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 941-953.
    [19]
    LADE P V. Creep, stress relaxation, and rate effects in sand[C]//Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009, Alexandria.
    [20]
    LÜ Y R, LI F, LIU Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states[J]. Canadian Geotechnical Journal, 2017, 54(11): 1601-1611.
    [21]
    张小燕, 蔡燕燕, 王振波, 等. 珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析[J]. 岩土力学, 2018, 39(5): 1573-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805004.htm

    ZHANG Xiao-yan, CAI Yan-yan, WANG Zhen-bo, et al. One-dimensional creep fractal fracture and particle shape analysis of coral sand under high pressure[J]. Rock and Soil Mechanics, 2018, 39(5): 1573-1580. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805004.htm
  • Cited by

    Periodical cited type(7)

    1. 张亮亮,程桦,王晓健. 基于统计规律的岩石非稳态蠕变经验模型研究. 岩石力学与工程学报. 2025(01): 164-173 .
    2. 余云燕,杜乾中,罗崇亮,丁小刚,李永鹏. 红层泥岩填料蠕变特性及分数阶五元件非线性蠕变模型研究. 中南大学学报(自然科学版). 2024(04): 1654-1664 .
    3. 蒋超,陈杰,蒋昌波,姚震,梁海,伍志元. 柱状珊瑚砂静水沉降试验研究. 海洋学报. 2023(04): 57-67 .
    4. 刘志遐,郭成超,曹鼎峰,黄锐. 中国南海珊瑚钙质砂压缩特性. 科学技术与工程. 2022(06): 2401-2408 .
    5. 马志奇,杨小彬,刘腾辉,李志辉. 粒径大小对颗粒堆积体Burgers模型蠕变参数相似试验研究. 矿业科学学报. 2022(06): 730-737 .
    6. 王宝迪,宿利平,刘洋. 改进西原蠕变模型研究及二次开发计算. 中国安全生产科学技术. 2022(08): 128-134 .
    7. 雷祖祥,刘明明,童立红,薛威,路华丽. 饱和砂土状态演化模型试验研究. 建筑结构. 2022(S2): 2188-2193 .

    Other cited types(14)

Catalog

    Article views (229) PDF downloads (67) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return