• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hong-yang, LUO Qiang, XIAO Jin-feng, ZHOU Xin, LI Yue. Tests on horizontal residual stresses of compacted clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 231-237. DOI: 10.11779/CJGE2020S2041
Citation: LIU Hong-yang, LUO Qiang, XIAO Jin-feng, ZHOU Xin, LI Yue. Tests on horizontal residual stresses of compacted clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 231-237. DOI: 10.11779/CJGE2020S2041

Tests on horizontal residual stresses of compacted clay and sand

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • Due to friction and biting between soil particles, residual stress will be generated after compaction. A set of horizontal residual stress testing device for compacted soils is designed and processed, which includes preparation of soil samples and loading. An experimental study is developed on the variation of the horizontal residual stresses of silt clay and sand with water content and compaction density. Then the horizontal residual stress characteristics of two typical roadbed filling are compared. Based on the Mohr-Coulomb criterion, a method for estimating the horizontal residual stress of compacted soil is proposed, which takes the characteristic components of shear capacity of soils cm and φf as the core parameters. Finally, an error analysis is performed on the estimated results. The research shows that the compacted silty clay samples have a strong frictional locking effect between particles. The horizontal residual stress decreases approximately linearly with the increasing water content and shows a trend of increasing polyline acceleration with the increase of compaction. The sand samples prepared by the vibration compaction method have a small contact force between the particles, but their horizontal residual stress increases significantly after loading and unloading static loads, and it increases approximately linearly with the increase of water content and relative density. The horizontal residual stress of the compacted silty clay is significantly greater than that of the uniformly graded sand. According to the proposed analytical model, the estimated values obtained are in good agreement with the test ones, the average error of the silty clay samples is about 6.30%, and that of the sand is about 17.80%.
  • [1]
    米谷茂. 残余应力的产生和对策[M]. 朱荆璞, 邵会孟,译.北京: 机械工业出版社, 1983.

    MI Gu-mao. Generation and Countermeasures of Residual Stress[M]. ZHU Jing-pu, SHAO Hui-meng, trans. Beijing: Mechanical Industry Press, 1983. (in Chinese)
    [2]
    袁静, 龚晓南. 基坑开挖过程中软土性状若干问题的分析[J]. 浙江大学学报(工学版), 2001, 35(5): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200105000.htm

    YUAN Jing, GONG Xiao-nan. Analysis of soft clay during excavation[J]. Journal of Zhejiang University (Engineering Science), 2001, 35(5): 3-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200105000.htm
    [3]
    JIANG M, YIN Z. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[J]. Tunneling and Underground Space Technology, 2012, 32: 251-259. doi: 10.1016/j.tust.2012.06.001
    [4]
    MOMOYA Y, SEKINE E, TATSUOKA F. Deformation characteristics of railway roadbed and subgrade under moving-wheel load[J]. Soils and Foundations, 2005, 45(4): 99-118. doi: 10.3208/sandf.45.4_99
    [5]
    MULLIS C H Jr. A Study of The Residual Lateral Pressures Induced in A Cohesionless Soil[D]. Atlanta: Georgia Institute of Technology, 1956.
    [6]
    INGOLD T S. The effects of compaction on retaining walls[J]. Géotechnique, 1979, 29(3): 265-283. doi: 10.1680/geot.1979.29.3.265
    [7]
    孙玉永, 周顺华, 庄丽. 考虑残余应力的基坑被动区土压力及强度计算[J]. 土木工程学报, 2011, 44(9): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201109012.htm

    SUN Yu-yong, ZHOU Shun-hua, ZHUANG Li. Calculation of passive earth pressure and shear strength in foundation pits considering residual stress[J]. China Civil Engineering Journal, 2011, 44(9): 94-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201109012.htm
    [8]
    周顺华. 地下工程开挖问题计算方法的再认识[J]. 科学通报, 2019, 64(25): 2608-2616. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925008.htm

    ZHOU Shun-hua. Rethinking of the calculation method of excavation issues in underground engineering[J]. Chinese Science Bulletin, 2019, 64(25): 2608-2616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925008.htm
    [9]
    刘宏扬, 罗强, 周鑫, 等. 侧限条件下路基压实黏土的水平残余应力试验分析[J]. 实验力学, 2020, 35(3): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202003008.htm

    LIU Hong-yang, LUO Qiang, ZHOU Xin, et al. Experimental analysis of horizontal residual stress of subgrade compacted clay under confined condition[J]. Journal of Experimental Mechanics, 2020, 35(3): 441-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202003008.htm
    [10]
    周健, 王冠英, 贾敏才. 无填料振冲法的现状及最新技术进展[J]. 岩土力学, 2008, 29(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801009.htm

    ZHOU Jian, WANG Guan-ying, JIA Min-cai. Situation and latest technical progress of vibroflotation without additional backfill treatment[J]. Rock and Soil Mechanics, 2008, 29(1): 37-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801009.htm
    [11]
    张嘎, 张建民. 基于瑞典条分法的应变软化边坡稳定性评价方法[J]. 岩土力学, 2007, 28(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htm

    ZHANG Ga, ZHANG Jian-min. Stability evaluation of strain-softening slope based on Swedish slice method[J]. Rock and Soil Mechanics, 2007, 28(1): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htm
  • Related Articles

    [1]WANG Cai-jin, ZHANG Tao, LUO Jun-hui, MA Chong, DUAN Long-chen. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109-112. DOI: 10.11779/CJGE2019S2028
    [2]LIU Huanyu, WANG Sijing, ZENG Qianbang, HU Bo, XIA Zhengyi. Judgment for non-mining fracture of shaft-lining in Yanzhou mine based on fuzzy neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1237-1240.
    [3]DING Dexin, ZHANG Zhijun. Application of ANFIS-based approach for back analysis of displacements in Xiangxi gold mine[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1123-1128.
    [4]ZHU Qingjie, MA Yajie, CHEN Yanhua. Evaluation of regional crust based on ANN[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1105-1109.
    [5]DING Dexin, ZHANG Zhijun. Study on ANFIS-based approach for inverse design of with circular failure surface sliding slopes[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 202-206.
    [6]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [7]ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710.
    [8]WANG Shuhong, HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 572-575.
    [9]WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505.
    [10]SUN Jun, YUAN Jinrong. Soil disturbance and ground movement under shield tunnelling and its intelligent prediction by using ANN technology[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 261-267.
  • Cited by

    Periodical cited type(9)

    1. 杨泽华,张高才,江帆,罗佳湘,张超. 不同水因素影响下土石混填体承载力学特性研究. 公路. 2024(06): 28-35 .
    2. 任明辉,赵光思,浦海,尹乾,王涛. 无黏性松散土石混合体剪切特性的结构效应及强度模型构建. 岩石力学与工程学报. 2024(07): 1707-1721 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. Zhou Wei,Hou Tianshun,Chen Ye,Wang Qi,Luo Yasheng,Zhang Yafei. Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method. Earthquake Engineering and Engineering Vibration. 2024(04): 815-828 .
    5. 王治林,郑明明,夏敏,熊亮,吴祖锐,王凯. 不同边界对花岗岩三轴试验影响的三维离散元数值研究. 钻探工程. 2023(01): 150-158 .
    6. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    7. 蒋成龙,许成顺,张小玲,王晓丽. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究. 土木工程学报. 2021(05): 77-86 .
    8. 王恒通,王家全,唐毅,黄文勤. 组合Clump颗粒加筋砂土三轴剪切试验离散元模拟分析. 广西科技大学学报. 2021(03): 34-41 .
    9. 张强,汪小刚,赵宇飞,周家文,孟庆祥,周梦佳. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究. 岩土工程学报. 2019(08): 1545-1554 . 本站查看

    Other cited types(26)

Catalog

    Article views (179) PDF downloads (64) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return