• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YI Shun, CHEN Jian, KE Wen-hui, CHEN Bin, LIU Fu-sheng, HUANG Jue-hao. Deformation of shield tunnels considering small strain in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 172-178. DOI: 10.11779/CJGE2020S2031
Citation: YI Shun, CHEN Jian, KE Wen-hui, CHEN Bin, LIU Fu-sheng, HUANG Jue-hao. Deformation of shield tunnels considering small strain in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 172-178. DOI: 10.11779/CJGE2020S2031

Deformation of shield tunnels considering small strain in soft soil areas

More Information
  • Received Date: August 31, 2020
  • Available Online: December 07, 2022
  • The shield tunnel will inevitably cause soil disturbances and endanger the safety of nearby structures. Therefore, it is particularly important to accurately predict the deformation caused by the shield tunnel. The small strain model in FLAC3D is used as a starting point, and the effectiveness and superiority of the small-strain plastic hardening model (PH-SS model) considering the small strain characteristics of soils are verified by the trixial simulation tests. Based on the shield tunnel in Shanghai soft soil areas, the MC model and the PH-SS model are used to study the displacement fields of surrounding soils caused by the shield tunnel. The study indicates that the PH-SS model can distinguish the difference between the loading and unloading moduli reflect the attenuation of the shear modulus of soils with the increasing shear strain, and it is more reasonable for showing the behavior of soft soils. When the stress release coefficient is less than 0.3, it doesn’t show much difference whether the small strain is considered or not in predicting the surface settlement. However, when the stress release coefficient is greater than 0.3, it is necessary to consider the small strain in soft soils. Large release coefficient of the shield tunnel will lead to greater mechanical response of soil stress-related modulus and larger deformation. By comparing the numerical results with the measured data, it can be obtained that the settlement predicated by the PH-SS model is closer to the measured data than that obtained by MC model, and it is more reasonable in predicating the surface deformation of actual shield tunnel by the PH-SS model.
  • [1]
    LEU Sou-Sen, LO Hsien-Chuang. Neural-network-based regression model of ground surface settlement induced by deep excavation[J]. Automation in Construction, 2004, 13(3): 279-289. doi: 10.1016/S0926-5805(03)00018-9
    [2]
    廖少明, 余炎, 白廷辉, 等. 盾构隧道叠交施工引起的土层位移场分布规律[J]. 岩土工程学报, 2006(4): 485-490. doi: 10.3321/j.issn:1000-4548.2006.04.012

    LIAO Shao-ming, YU Yan, BAI Yan-hui, et al. Distribution law of soil displacement field caused by overlapping shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2006(4): 485-490. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.04.012
    [3]
    PECK R B. Deep excavations and tunnelling in soft ground[C]//Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. 1969, Mexico.
    [4]
    吴昌胜, 朱志铎. 不同直径盾构隧道地层损失率的对比研究[J]. 岩土工程学报, 2018, 40(12): 2257-2265. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201812015.htm

    WU Chang-sheng, ZHU Zhi-duo. Comparative study on volume loss rate of shield tunnels with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201812015.htm
    [5]
    张冬梅, 黄宏伟, 杨峻. 衬砌局部渗流对软土隧道地表长期沉降的影响研究[J]. 岩土工程学报, 2005, 27(12): 1430-1436. doi: 10.3321/j.issn:1000-4548.2005.12.012

    ZHANG Dong-mei, HUANG Hong-wei, YANG Jun. Study on long-term settlement of soft soil tunnel surface caused by lining local seepage[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1430-1436. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.12.012
    [6]
    PUZRIN A M, BURLAND J B. Non-linear model ofsmall- strain behaviour of soils[J]. Géotechnique, 1998, 48(2): 217-233. doi: 10.1680/geot.1998.48.2.217
    [7]
    BURLAND J B. Small is beautiful-the stiffness of soils atsmall strains[J]. Canadian Geotechnical Journal, 1989, 26: 499-516. doi: 10.1139/t89-064
    [8]
    BENZ T. Small strain stiffness of soils and its numerical consequences[D]. Stuttgart: University of Stuttgart, 2006.
    [9]
    ISHIHARA K J. Soil Behaviour in Earthquake Geotechnics[M]. Oxford: Oxford University Press, 1996.
    [10]
    LEE K M, ROWE R K. Effects of undrained strength anisotropy on surface subsidence induced by the construction of shallow tunnels[J]. Canadian Geotechnical Journal, 2011, 26(2): 279-291.
    [11]
    LEE K M, ROWE R K. Deformations caused by surface loading and tunnelling: the role of elastic anisotropy[J]. Géotechnique, 1989, 39(1): 125-140. doi: 10.1680/geot.1989.39.1.125
    [12]
    FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions), Version 6.0, User manual[R]. USA: ltasca Consulting Group, Inc. 2017.
    [13]
    尹骥. 上海地区非饱和粉质黏土本构模型的研究[D]. 上海: 同济大学, 2008.

    YIN Ji. Study on Constitutive Model of Unsaturated Silty Clay in Shanghai[D]. Shanghai: Tongji University, 2008. (in Chinese)
    [14]
    SCHANZ T, VERMEER P A, BONNIER P G. The hardening soil model: Formulation and verification[C]//Beyond 2000 inComputional Geotechnics-10 Years of Plaxis. Amsterdam: [s. n.], 1999: 281-296.
    [15]
    曹勇, 孔令伟, 杨爱武. 海积结构性软土动力性状的循环荷载波形效应与刚度软化特征[J]. 岩土工程学报, 2013, 35(3): 583-589. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303026.htm

    CAO Yong, KONG Ling-wei, YANG Ai-wu. Cyclic load waveform effect and stiffness softening characteristics of dynamic behavior in marine soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 583-589. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303026.htm
    [16]
    谢东武, 管飞, 丁文其. 小应变硬化土模型参数的确定与敏感性分析[J]. 地震工程学报, 2017, 39(5): 898-906. doi: 10.3969/j.issn.1000-0844.2017.05.0898

    XIE Dong-wu, GUAN Fei, DING Wen-qi. Determination and sensitivity analysis of parameters of small strain hardening soil model[J]. Journal of Earthquake Engineering, 2017, 39(5): 898-906. (in Chinese) doi: 10.3969/j.issn.1000-0844.2017.05.0898
    [17]
    LEE K M, JI H W, SHEN C K, et al. Ground response to the construction of Shanghai Metro Tunnel-Line2[J]. Soils and Foundations, 1999, 39(3): 113-134. doi: 10.3208/sandf.39.3_113
    [18]
    梁发云, 贾亚杰, 丁钰津等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702012.htm

    LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al. Experimental study on parameters of HSS model for soft soil in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 269-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201702012.htm
    [19]
    王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6): 1766-1774. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm

    WANG Wei-dong, WANG Hao-ran, XU Zhong-hua. Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and soil Mechanics, 2013, 34(6): 1766-1774. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306037.htm
    [20]
    侯景军, 何俊, 汤正俊, 等. 软土基坑中内插H型钢重力式挡土墙支护的变形及稳定性的有限元研究[J]. 岩土力学, 2014, 35(增刊1): 431-436. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1061.htm

    HOU Jing-jun, HE Jun, TANG Zheng-jun, et al. Application of gravity retaining wall with H-shaped steel in soft soil foundation pit[J]. Rock and soil Mechanics, 2014, 35(S1): 431-436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1061.htm
    [21]
    张传庆, 冯夏庭, 周辉, 等. 应力释放法在隧洞开挖模拟中若干问题的研究[J]. 岩土力学, 2008, 29(5): 1174-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200805006.htm

    ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, et al. Study on several issues in tunnel excavation simulation by stress release method[J]. Rock and soil Mechanics, 2008, 29(5): 1174-1180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200805006.htm
    [22]
    Möller, Sven Christian. Tunnel induced settlements and structural forces in linings[R]. Stuttgart: Univ. Stuttgart, Inst. f. Geotechnik, 2006.
  • Cited by

    Periodical cited type(7)

    1. 张旭生. 淤泥质软土地层盾构施工地表变形预测. 江苏建筑. 2025(01): 51-55 .
    2. 吴穹,林勇华,易顺,钟坤. 基于不同本构模型的深竖井群施工对邻近隧道的影响. 水电能源科学. 2024(08): 87-91 .
    3. 仉文岗,唐学成,刘汉龙,杨文钰,刘智成,王鲁琦,李红蕊. 静-动荷载作用下欠固结软土盾构隧道长期沉降与最优埋深计算方法. 隧道建设(中英文). 2024(09): 1829-1840 .
    4. 唐宇,叶社保,张志宇,杨平. 软流塑地层盾构施工参数对地表竖向位移的影响. 林业工程学报. 2023(01): 179-188 .
    5. 王润钰,易顺,黄珏皓. 基于最小二乘法的隧道地表沉降拟合研究. 科技和产业. 2022(04): 389-393 .
    6. 易顺,林伟宁,陈健,黄珏皓,李健斌,吴佳明. 基于随机场理论的基坑开挖地表及围护墙变形分析. 岩石力学与工程学报. 2021(S2): 3389-3398 .
    7. 郑健,苑健,林君君,徐兴芃,柯兰玲. 硬岩-软土盾构隧道断面收敛规律研究. 工程技术研究. 2021(19): 150-152 .

    Other cited types(4)

Catalog

    Article views (217) PDF downloads (121) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return