Citation: | ZHOU Xian, HU Bo, TONG Jun, HOU Hao-bo, ZHANG Ting, WAN Sha, GENG Jun-jun. Mechanism of heavy metal stabilization by red mud-based geopolymer[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 239-243. DOI: 10.11779/CJGE2020S1047 |
[1] |
CHANDLER A J, EIGHMY T T, HARTLTN J, et al. Municipal Solid Waste Incinerator Residues[M]. The Netherlands: Elsevier Science, 1997: 15-21.
|
[2] |
ZACCO A, BORGESE L, GIANONCELLI A, et al. Review of fly ash inertisation treatments and recycling[J]. Envir- onmental Chemistry Letters, 2014, 12(1): 153-175. doi: 10.1007/s10311-014-0454-6
|
[3] |
ZHAN X, WANG L, HU C, et al. Co-disposal of MSWI fly ash and electrolytic manganese residue based on geopolymeric system[J]. Waste Managment, 2018, 82: 62-70. doi: 10.1016/j.wasman.2018.10.014
|
[4] |
ZHANG M, EL-KORCHI T, ZHANG G P, et al. Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud-fly ash based geopolymers[J]. Fuel, 2014, 134: 315-325. doi: 10.1016/j.fuel.2014.05.058
|
[5] |
SUN H H, FENG X P, LIU X M, et al. The influence of mechanochemistry on the structure speciality and cementitious performance of red mud[J]. Rare Metal Materials and Engineering, 2007, 36(S2): 568-570.
|
[6] |
GENG J, ZHOU M, LI Y, et al. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation[J]. Construction and Building Materials, 2017, 153: 185-192. doi: 10.1016/j.conbuildmat.2017.07.045
|
[7] |
CHOU J D, WEY M Y, CHANG S H. Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1000-6.
|
[8] |
LEE S, SEO M-D, KIM Y-J, et al. Unburned carbon removal effect on compressive strength development in a honeycomb briquette ash-based geopolymer[J]. International Journal of Mineral Processing, 2010, 97(1/2/3/4): 20-25.
|
[9] |
DEJA J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders[J]. Cement and Concrete Research, 2002, 32(12): 1971-1979. doi: 10.1016/S0008-8846(02)00904-3
|
[10] |
LIEW Y M, HEAH C Y, MOHD MUSTAFA A B, et al. Structure and properties of clay-based geopolymer cements: A review[J]. Progress in Materials Science, 2016, 83: 595-629. doi: 10.1016/j.pmatsci.2016.08.002
|
[11] |
ZHENG L, WANG W, GAO X. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: based on partial charge model analysis[J]. Waste Managment, 2016, 58: 270-279. doi: 10.1016/j.wasman.2016.08.019
|
[12] |
PALOMO A, PALACIOS M. Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes[J]. Cement and Concrete Research, 2003, 33(2): 289-295. doi: 10.1016/S0008-8846(02)00964-X
|
[13] |
ZHOU X, ZHOU M, WU X, et al. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag[J]. Chemosphere, 2017, 182: 76-84. doi: 10.1016/j.chemosphere.2017.04.072
|
[14] |
NIE Q, HU W, AI T, et al. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature[J]. Construction and Building Materials, 2016, 125: 905-911. doi: 10.1016/j.conbuildmat.2016.08.144
|
[15] |
GRANIZO M L, ALONSO S, BLANCO-VARELA M T, et al. Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction[J]. Journal of the American Ceramic Society, 2010, 85(1): 225-231.
|
[16] |
HE J, JIE Y X, ZHANG J H, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites[J]. Cement & Concrete Composites, 2013, 37: 108-118.
|