• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013
Citation: WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013

Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment

More Information
  • Received Date: June 03, 2020
  • Available Online: December 07, 2022
  • Aiming at the durability and long-term stability problems of calcareous sand-cemented soil composite foundation in the marine environment, the seawater is used as the corrosive medium to perform an indoor soaking test on the calcareous sand cemented soil, and the micro cone penetration, scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction tests are conducted to analyze the strength and microstructure characteristics of calcareous sand cemented soil with different curing time and cement ratios under seawater environment. The results show that the erosion depth of calcareous sand-cemented soil gradually increases with the increase of curing time and gradually decreases with the increase of cement ratio, and the increase of cement ratio can effectively inhibit the erosion depth of cemented soil caused by seawater corrosive ions. Compared with those of the non-eroded layer, the porosities of microstructure are lager and the Ca contents are less in the eroded layer, and the Ca content and the strength of cemented soil show a similar rule. Under seawater environmental conditions, the strength change of cemented soil is the common result of the effects of growth and erosion. In this process, the cemented soil is prone to the phenomenon of Ca dissolution, which finally leads to the strength reduction of cemented soil.

  • [1]
    COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626. doi: 10.1680/geot.1990.40.4.607
    [2]
    GHAZALI F M, SOTIROPOULOS E, MANSOUR O A. Large-diameter bored and grouted piles in marine sediments of the Red Sea[J]. Canadian Geotechnical Journal, 1988, 25(4): 826-831. doi: 10.1139/t88-090
    [3]
    房靖超, 陈涛, 何岩东, 等. 珊瑚砂层注浆的固化技术研究[J]. 海南大学学报(自然科学版), 2016, 34(3): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDK201603011.htm

    FANG Jing-chao, CHEN Tao, HE Yan-dong, et al. Solidification technology of coral sand[J]. Natural Science Journal of Hainan University, 2016, 34(3): 264-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDK201603011.htm
    [4]
    HARA H, HAYASHI S, SUETSUGU D, et al. Study on the property changes of lime-treated soil under sea water[J]. Doboku Gakkai Ronbunshuu C/JSCE Journal of Geotechnical and Geoenvironmental Engineering, 2010, 66(1): 21-30.
    [5]
    刘泉声, 屈家旺, 柳志平, 等. 侵蚀影响下水泥土的力学性质试验研究[J]. 岩土力学, 2014, 35(12): 3377-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412005.htm

    LIU Quan-sheng, QU Jia-wang, LIU Zhi-ping, et al. Experimental study of mechanical properties of cemented soil under corrosion influence[J]. Rock and Soil Mechanics, 2014, 35(12): 3377-3384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412005.htm
    [6]
    杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201013.htm

    YANG Jun-jie, SUN Tao, ZHANG Yue-chen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201013.htm
    [7]
    闫楠. 滨海相软土场地形成的水泥土强度衰减过程研究[D]. 青岛: 中国海洋大学, 2015.

    YAN Nan. Research on Strength Deterioration Process of Cement Soil in Site of Marine Soft Soil[D]. Qingdao: Ocean University of China, 2015. (in Chinese)
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011
    [3]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [4]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [5]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [6]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [7]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [8]ZHOU Cuiying, MU Chunmei. Analysis on effective radius of gravel piles reinforcement in soft soil foundations based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 755-758.
    [9]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
    [10]Shi Bin. Quantitative  Assessment  of  Changes  of  Microstructure  for  Clayey  Soil  in  the  Process  of  Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65.
  • Cited by

    Periodical cited type(12)

    1. 庄心善,杨本驰,寇强. 腐蚀环境下纳米SiO_2改良水泥土动弹性模量与阻尼比试验. 工程科学与技术. 2025(01): 253-263 .
    2. 何俊,朱元军,李文静. 干湿循环与侵蚀耦合作用下碱渣固化淤泥的强度与损伤. 水利水电科技进展. 2025(01): 94-103 .
    3. 周利剑,胥立广,张睿,卢召红,邓华. 纤维替代率对纤维增强水泥基复合材料(ECC)抗海水侵蚀能力影响研究. 河南科学. 2025(02): 218-224 .
    4. 孙悦,张文亮,张建鹏,王蕾,李鹏,杨飞宇,何灵垚. 海水环境下硫酸盐侵蚀钙质砂注浆体试验研究. 山东大学学报(工学版). 2024(04): 122-130+140 .
    5. 苏群勇. 侵蚀环境对水泥土力学性能的研究综述. 江西建材. 2024(06): 6-8 .
    6. 王晓光. 海洋环境下珊瑚岛土层溶蚀效应及渗透性特征研究. 水利科技与经济. 2022(02): 122-125 .
    7. 宋鑫,崔自治,邢敏,李亚东. 粉煤灰、炉渣对干湿循环下水泥土力学性能的影响. 宁夏工程技术. 2022(01): 40-43 .
    8. 陈利宏,杜军,唐灵敏,熊勃,姚嘉敏. 不同养护龄期下水泥掺入比对水泥土直剪特性的影响. 广东土木与建筑. 2022(05): 35-39 .
    9. 莫家权,耿汉生,马林建,许宏发,林一帆,张涛麟. 海水养护钙质砂注浆结石体的力学性能试验. 陆军工程大学学报. 2022(04): 58-65 .
    10. 王子帅,王东星. 工业废渣–水泥协同固化土抗硫酸盐侵蚀性能. 岩土工程学报. 2022(11): 2035-2042 . 本站查看
    11. 张丹,吴振威,宋苗苗,徐桂中,邱成春,曹裕翔. 盐分侵蚀对水泥固化土力学特性的影响研究. 土木工程与管理学报. 2022(05): 94-99 .
    12. 蒋应军,张伟,李启龙,乔怀玉. 城际铁路水泥改良黄土填料力学特性. 硅酸盐通报. 2021(07): 2409-2417+2436 .

    Other cited types(13)

Catalog

    GAO Lu-chao

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (339) PDF downloads (100) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return