• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Ming-jiang, CAI Zheng-yin, GUO Wan-li, HUANG Ying-hao, ZHANG Chen. Experimental study on special physical and mechanical properties of white sandstone in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 1-5. DOI: 10.11779/CJGE2020S1001
Citation: DENG Ming-jiang, CAI Zheng-yin, GUO Wan-li, HUANG Ying-hao, ZHANG Chen. Experimental study on special physical and mechanical properties of white sandstone in North Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 1-5. DOI: 10.11779/CJGE2020S1001

Experimental study on special physical and mechanical properties of white sandstone in North Xinjiang

More Information
  • Received Date: June 03, 2020
  • Available Online: December 07, 2022
  • The white sandstone is a commonly used soil material in the Gobi canal. In order to study its physical and mechanical properties, a series of indoor tests are carried out. The following conclusions are drawn: (1) The white sandstone can be classified as the silty sand, its main mineral composition is quartz sand with the mass percent of 66%, and the clay mineral is montmorillonite and kaolinite, accounting for 17%. The special mineral composition and grain size distribution of the silty sand makes it have special behavior, which is similar to that of sand and clay. Among them, the liquid plastic limit closes to that of the low liquid limit clay. The permeability coefficient is on the order of 10-6 cm/s, closing to that of silt and clay. (2) Whether it is in loose or dense state, the stress of the white sandstone sand is shown as strain hardening, and no volume dilatation occurs. The cohesion increases significantly with the increasing compaction degree, when the compaction degree is 96%, c=41 kPa, which is close to that of the clay. The internal friction angle has little relation with the compaction degree, which is basically 31.8° under different compaction degrees. (3) The critical state line in the e-lnp space of the white sandstone is the same as that of brittle granular materials such as coral sand and even rockfills. Moreover, the critical state stress ratio is not a constant, but affected by the confining pressure and the initial density. All of those are significantly different from the critical state characteristics of the ordinary sandy soils.
  • [1]
    朱洵, 蔡正银, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土力学特性及损伤演化规律研究[J]. 岩石力学与工程学报, 2019, 38(6): 1233-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906014.htm

    ZHU Xun, CAI Zheng-yin, HUANG Ying-hao, et al. Research on mechanical properties and damage evolution law of expensive soils under cyclic action of coupling wetting-drying and freeze-thaw[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1233-1241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906014.htm
    [2]
    张晨, 蔡正银, 黄英豪, 等. 输水渠道冻胀离心模拟试验[J]. 岩土工程学报, 2016, 38(1): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601013.htm

    ZHANG Chen, CAI Zheng-yin, HUANG Ying-hao, et al. Centrifuge modelling of frost-heave of canals[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 109-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601013.htm
    [3]
    住房和城乡建设部. 土工试验方法标准:GBT 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urbar-Rural Development of the PRC. Standard for Geotechnical Testing Method: GB/T50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [4]
    蔡正银, 侯贺营, 张晋勋, 等. 考虑颗粒破碎影响的珊瑚砂临界状态与本构模型研究[J]. 岩土工程学报, 2019, 41(6): 989-995. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm

    CAI Zheng-yin, HOU He-ying, ZHANG Jin-xun, et al. Critical state and constitutive model for coral sand considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 989-995. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906002.htm
    [5]
    蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm
    [6]
    陆勇, 周国庆, 顾欢达. 常压至高压下砂土强度、变形特性试验研究[J]. 岩石力学与工程学报, 2016, 35(11): 2369-2376. doi: 10.13722/j.cnki.jrme.2016.0273

    LU Yong, ZHOU Guo-qing, GU Huan-da. Experimental study of strength and deformation characteristics of sand under different pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2369-2376. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0273
  • Related Articles

    [1]YE Qing, GUO Wei, REN Yuxiao, ZHUANG Daokun, CUI Saiyue. Horizontal bearing characteristics of double-inclined rock-socketed piles based on cohesion model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 233-238. DOI: 10.11779/CJGE2024S10041
    [2]ZHANG Qian-qing, LI Zhen-bao, MA Bin, LI Liang-liang, LI Shu-an, WU Jian-qun. Vertical bearing behavior of rigid and flexible piles in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002
    [3]WANG Ming-yuan, SHAN Zhi-gang, RAO Xi-bao, JIANG Ji-wei, PAN Jia-jun, DI Sheng-jie. Numerical inversion study on comprehensive capacity of marine steel pipe pile based on field pile loading tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 143-148. DOI: 10.11779/CJGE2016S2023
    [4]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [5]DAI Xin, XU wei, ZOU Li, SHEN Qing-feng. Numerical simulation of shafts during excavation process[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 154-157.
    [6]YE Jianzhong, ZHOU Jian, HAN Bing. Numerical simulation on characteristics of single pile setup by different methods with particle flow code based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 894-900.
    [7]LIU Wenbai, ZHOU Jian. Numerical simulation of Particle Flow Code for pile under uplifting load[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 516-521.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.
  • Cited by

    Periodical cited type(1)

    1. 温嘉琦,汤雷. 岩石平面应变状态辨识特征与精度控制. 地下空间与工程学报. 2024(02): 471-479+506 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return