• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Yan-bin, HE Ning, WANG Zhang-chun, HE Bin, QIAN Ya-jun. Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2106-2114. DOI: 10.11779/CJGE202011016
Citation: JIANG Yan-bin, HE Ning, WANG Zhang-chun, HE Bin, QIAN Ya-jun. Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2106-2114. DOI: 10.11779/CJGE202011016

Finite element modelling types for rigid pile composite foundation under geosynthetic-reinforced embankment

More Information
  • Received Date: November 24, 2019
  • Available Online: December 05, 2022
  • Based on the in-situ test section of CFG pile composite foundation under geosynthetic-reinforced embankment, the finite element models for a single pile, group piles and full section are established, respectively, and the influences of the geometric model, pile-soil contact and other conditions on system deformation, stress distribution and load transfer are discussed. Mostly due to the influences of embankment boundary effect, the settlement and load distribution of the full-section model are both developed in time as the in-situ test results. The stress ratio (n) and the load-sharing efficiency of pile (E) both reach the maximum near the inner side of the embankment shoulder and are 15.7% and 5.2% higher than those in the center of the embankment, respectively. At the toe of the slope, the displacement vector angle of the pile top, the horizontal load and bending moment of the pile are quite significant. Under the surcharge with the same equal thickness, the single-pile model has similar performance with the group-pile model, and the settlement development of both is relatively slow and slightly lower than that of the full-section model. In each model, the predicted results show that n, E and the equal settlement surface height are all directly proportional to the differential settlement of soil-pile on the subsurface at the final computing time. The distribution of non-uniform vertical stress on the subsurface is shown according to the numerical results. According to the statistic results, the deviation between the test load and the theoretical load can be -35.1% to 58.5% within single-pile reinforced area. Setting the contact interaction to enable the relative displacement of pile and soil will increase both the settlement and the height of the equal settlement surface, and also affect the stress of the shallow pile shaft. The full-section finite element model with pile-soil interaction is recommended to investigate the composite foundation under reinforced embankment.
  • [1]
    娄炎, 何宁, 娄斌. 高速公路深厚软基工后沉降控制成套技术[M]. 北京: 人民交通出版社, 2011: 91-104.

    LOU Yan, HE Ning, LOU Bin. Complete Settlement Control Technology for Deep Soft Foundation of Expressway[M]. Beijing: China Communications Press, 2011: 91-104. (in Chinese)
    [2]
    姜彦彬, 何宁, 林志强, 等. 路堤深厚软基管桩复合地基数值模拟[J]. 水利水运工程学报, 2018(2): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm

    JIANG Yan-bin, HE Ning, LIN Zhi-qing, et al. Numerical study on pipe pile composite foundation of deep soft foundation under embankment[M]. Hydro-science and Engineering, 2018(2): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201802006.htm
    [3]
    JENCK O, DIAS D, KASTNER R. Three-dimensional numerical modeling of a piled embankment[J]. Int J Geomech, 2009, 9: 102-112. doi: 10.1061/(ASCE)1532-3641(2009)9:3(102)
    [4]
    ARIYARATHNE P, LIYANAPATHIRANA D S. Review of existing design methods for geosynthetic-reinforced pile-supported embankments[J]. Soils and Foundations, 2015, 55: 17-34. doi: 10.1016/j.sandf.2014.12.002
    [5]
    KHABBAZIAN M, KALIAKIN V N, MEEHAN C L. Column supported embankments with geosynthetic encased columns: validity of the unit cell concept[J]. Geotechnical and Geological Engineering, 2015, 33(3): 425-442. doi: 10.1007/s10706-014-9826-8
    [6]
    HEWLETT W J, RANDOLPH M F. Analysis of piled embankments[J]. Ground Eng, 1988, 21(3): 12-18.
    [7]
    LIU W Z, QU S, ZHANG H, et al. An integrated method for analyzing load transfer in geosynthetic-reinforced and pile-supported embankment[J]. KSCE Journal of Civil Engineering, 2017, 21(3): 687-702. doi: 10.1007/s12205-016-0605-3
    [8]
    LIU H L, NG C W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483)
    [9]
    ZHUANG Y, WANG K Y. Finite-element analysis on the effect of subsoil in reinforced piled embankments and comparison with theoretical method predictions[J]. International Journal of Geomechanics, 2016, 16(5): 1-15.
    [10]
    LIU H L, KONG G Q, DING X M, et al. Performances of large-diameter cast-in place concrete pipe pile and pile group under lateral loads[J]. Journal of Performance of Constructed Facilities, 2013, 27(2): 191-202.
    [11]
    CHEN R P, XU Z Z, CHEN Y M. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 777-785. doi: 10.1061/(ASCE)GT.1943-5606.0000295
    [12]
    BRIANÇON L, SIMON B. Performance of pile-supported embankment over soft soil: full-scale experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 551-561.
    [13]
    LIU H L, KONG G Q, CHU J, et al. Grouted gravel column-supported highway embankment over soft clay: case study[J]. Canadian Geotechnical Journal, 2015, 52(11): 1725-1733. doi: 10.1139/cgj-2014-0284
    [14]
    ZHOU M, LIU H L, CHEN Y M, et al. First application of cast-in-place concrete large-diameter pipe (PCC) pile- reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2016, 53(4): 708-716. doi: 10.1139/cgj-2014-0547
    [15]
    CHENG Q G, WU J J, ZHANG D X, et al. Field testing of geosynthetic-reinforced and column-supported earth platforms constructed on soft soil[J]. Frontiers of Structural and Civil Engineering, 2014, 8(2): 124-139. doi: 10.1007/s11709-014-0255-9
    [16]
    CAO W Z, ZHENG J J, ZHANG J, et al. Field test of a geogrid-reinforced and floating pile-supported embankment[J]. Geosynthetics International, 2016, 23(5): 348-361. doi: 10.1680/jgein.16.00002
    [17]
    郑俊杰, 张军, 马强, 等. 路桥过渡段桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2012, 34(2): 355-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm

    ZHENG Jun-Jie, ZHANG Jun, MA Qiang, et al. Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 355-362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm
    [18]
    夏唐代, 王梅, 寿旋, 等. 筒桩桩承式加筋路堤现场试验研究[J]. 岩石力学与工程学报, 2010, 29(9): 1929-1936. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009025.htm

    XIA Tang-dai, WANG Mei, SHOU Xuan, et al. Field test study of reinforced embankment supported by cast-in-situ thin-wall tubular piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1929-1936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009025.htm
    [19]
    LOW B K, TANG S K, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938.
  • Cited by

    Periodical cited type(17)

    1. 高钰,王金昌. 不均匀地层中刚性桩复合地基变形及加固措施分析. 科技通报. 2024(01): 71-78+105 .
    2. 朱思琪,姜彦彬,周晨浩,周汤啸,殷倩倩. 透水混凝土桩复合地基工作特性研究. 公路. 2024(06): 12-19 .
    3. 陈仕文,唐昌意,李栋. 加筋路堤下刚性桩复合地基变形特性分析. 公路交通科技. 2024(08): 106-113 .
    4. 罗强,程田,薛元,刘宏扬,张东卿. 路堤下CFG桩复合地基稳定性分析方法及试验验证. 铁道学报. 2024(11): 145-154 .
    5. 郭帅杰,周亚东,宋绪国. 三角形布桩桩网复合地基桩土应力计算方法. 应用基础与工程科学学报. 2024(06): 1597-1609 .
    6. 张军辉,林晨,杨毅. 复合地基加固的半分离式路堤沉降特性研究. 交通科学与工程. 2023(01): 7-16 .
    7. 姜彦彬,何宁,钱亚俊,张中流,王艳芳. 桩承式加筋路堤荷载分担计算改进模型. 水利水运工程学报. 2023(01): 131-139 .
    8. 高钰,王金昌,鄢露秋. 基于状态空间法的桩承加筋路堤分析方法. 低温建筑技术. 2023(07): 132-136 .
    9. 姜彦彬,丁元芳,钱亚俊,倪政,王艳芳. 刚性桩复合地基离心试验插桩制模研究. 水利水运工程学报. 2023(05): 123-130 .
    10. 汪璋淳,姜彦彬,何宁,钱亚俊,周彦章,王艳芳. 城市堤路结合工程变形控制措施研究. 水利水运工程学报. 2023(06): 133-141 .
    11. 姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 .
    12. 刘学强. 潮汐滩涂淤泥质路段CFG桩成桩质量分析. 路基工程. 2022(04): 217-222 .
    13. 李亚东,彭龙帆,李纪昕,徐小洋,刘志红. 三向土工格栅加筋桩承式路堤现场测试研究. 建筑施工. 2022(08): 1923-1926 .
    14. 董俊利,陈军浩,聂如松,李亚峰. 螺纹桩复合地基桩土应力比模型试验与数值模拟. 铁道科学与工程学报. 2022(10): 2966-2975 .
    15. 卢彬彬. 基于差异沉降的桩承加筋路堤优化设计. 广东土木与建筑. 2021(03): 62-65 .
    16. 刘洪波,李水江,叶永康,符军. 考虑成层土的储罐CFG桩复合地基沉降变形细观分析. 广东土木与建筑. 2021(09): 46-50 .
    17. 邵韦弦. 碎石桩加固软土地基路堤变形与稳定性分析. 公路. 2021(10): 58-66 .

    Other cited types(15)

Catalog

    Article views (294) PDF downloads (198) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return