• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JING Li-ping, YIN Zhi-yong, SUN Hai-feng, DONG Rui, XU Kun-peng, LI Yong-qiang. Shaking table tests on two geotechnical seismic isolation systems[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1969-1978. DOI: 10.11779/CJGE202011001
Citation: JING Li-ping, YIN Zhi-yong, SUN Hai-feng, DONG Rui, XU Kun-peng, LI Yong-qiang. Shaking table tests on two geotechnical seismic isolation systems[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1969-1978. DOI: 10.11779/CJGE202011001

Shaking table tests on two geotechnical seismic isolation systems

More Information
  • Received Date: November 24, 2019
  • Available Online: December 05, 2022
  • Applying the low-cost seismic isolation technology is a key way to reduce earthquake disasters of rural houses. Recently, the geotechnical seismic isolation (GSI) which uses low modulus materials between the structural foundation and the foundation soil has aroused widespread research interest. In this study, two low-cost GSI systems are proposed, which include the geotechnical seismic isolation system based on the sand cushion (GSI-SC) and the geotechnical seismic isolation system based on glass bead-sand cushion (GSI-GBSC). Through the large-scale shaking table model tests considering the site, the comparison tests between the single-layer masonry structure model with and without isolation system are carried out. The single-layer masonry structure model is made with a 1/4 scale. The north-south component of the El-Centro waves recorded in 1940 is selected as the input waves, and the peak input acceleration is 0.1g, 0.2g, and 0.4g, respectively. The results of the shaking table tests show that the two proposed low-cost GSI systems can decrease the seismic response of the structures and achieve the purpose of isolation. When the input acceleration amplitude is 0.4g, the GSI-SC system makes the reduction rate of the acceleration response of the structural roofs and the interlayer displacement response of the structures reach 33% and 39%, respectively, while the corresponding reduction rate of the GSI-GBSC system is 45% and 48%. Both the GSI-SC system and the GSI-GBSC system have strong isolation capability, simple construction and low cost, which are suitable for promotion in rural areas. In terms of isolation effect, the GSI-GBSC system has more superiority to the GSI-SC system.
  • [1]
    李立. 建筑物的滑动隔震-隔震技术的研究与应用[M]. 北京: 地震出版社, 1991: 50-68.

    LI Li. Research and Application of Sliding Isolation Technology of Building[M]. Beijing: Earthquake Publishing House, 1991: 50-68. (in Chinese)
    [2]
    曹万林, 周中一, 王卿, 等. 农村房屋新型隔震与抗震砌体结构振动台试验研究[J]. 振动与冲击, 2011, 30(11): 209-213. doi: 10.3969/j.issn.1000-3835.2011.11.042

    CAO Wan-lin, ZHOU Zhong-yi, WANG Qing, et al. Experimental study on base vibration isolation and anti- seismic masonry structure in rural areas by shaking table test[J]. Journal of Vibration and Shock, 2011, 30(11): 209-213. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.11.042
    [3]
    曹万林, 叶炜, 张玉山, 等. 玻璃珠-石墨基础滑移隔震砌体结构工作性能试验研究[J]. 自然灾害学报, 2015(5): 37-46. doi: 10.13577/j.jnd.2015.0505

    CAO Wan-lin, YE Wei, ZHANG Yu-shan, et al. Experimental study on working performance of the base sliding isolated masonry structure with glass beads-graphite layer[J]. Journal of Natural Disasters, 2015(5): 37-46. (in Chinese) doi: 10.13577/j.jnd.2015.0505
    [4]
    尚守平, 黄群堂, 沈戎, 等. 钢筋-沥青隔震墩砌体结构足尺模型试验研究[J]. 建筑结构学报, 2012, 33(3): 132-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201203023.htm

    SHANG Shou-ping, HUANG Qun-tang, SHEN Rong, et al. Full-scale experimental research on steel asphalt isolation pier[J]. Journal of Building Structures, 2012, 33(3): 132-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201203023.htm
    [5]
    李英民, 卜长明, 刘凯, 等. 简易消能减震砌体结构模型振动台试验[J]. 重庆大学学报, 2013, 36(6): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201306008.htm

    LI Ying-min, BU Chang-ming, LIU Kai, et al. Shaking table experiment on a simple energy dissipation masonry structure[J]. Journal of Chongqing University, 2013, 36(6): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201306008.htm
    [6]
    TSANG H H. Seismic isolation by rubber-soil mixtures for developing countries[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(2): 283-303.
    [7]
    TSANGA Hing-Ho, PITILAKISB Kyriazis. Mechanism of geotechnical seismic isolation system: analytical modeling[J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 171-184. doi: 10.1016/j.soildyn.2019.03.037
    [8]
    TSANG H H. Seismic isolation by rubber-soil mixtures for developing countries[J]. Earthquake Engineering & Structural Dynamics, 2007, 37(2): 283-303.
    [9]
    TSANG Hing-Ho, LO S H, XU X, et al. Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2009-2024.
    [10]
    FENG Z Y, SUTTER K G. Dynamic properties of granulated rubber-Sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344. doi: 10.1520/GTJ11055J
    [11]
    尚守平, 岁小溪, 周志锦, 等. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. 岩土力学, 2010, 31(2): 377-381. doi: 10.3969/j.issn.1000-7598.2010.02.008

    SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, et al. Experimental study on dynamic shear modulus of rubber-sand mixtures[J]. Soil and Rock, 2010, 31(2): 377-381. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.02.008
    [12]
    SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics & Earthquake Engineering, 2012, 33(1): 38-53.
    [13]
    ANASTASIADIS A, SENETAKIS K, PITILAKIS K. Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures[J]. Geotechnical and Geological Engineering, 2012, 30(2): 363-382. doi: 10.1007/s10706-011-9473-2
    [14]
    ANBAZHAGAN P, MAMATHA M, SOUMYASHREE P, et al. Laboratory characterization of tyre crumbs soil mixture for developing low cost damping materials[J]. International Journal of Earth Sciences and Engineering, 2011, 4(6): 63-66.
    [15]
    NAKHAEE A, MARANDI S M. Reducing the forces caused by earthquake on retaining walls using granulated rubber-soil mixture[J]. IJE Transaction B: Applications, 2011, 24(4): 337-350.
    [16]
    刘方成, 杨峻, 王海东. 大应变下干燥橡胶砂动力特性试验研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4265-4278. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2092.htm

    LIU Fang-cheng, YANG Jun, WANG Hai-dong. Experimental study on dynamic characteristics of dry rubber-sand mixture at large strains[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4265-4278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2092.htm
    [17]
    刘方成, 陈璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. 岩土力学, 2016, 37(7): 1903-1913. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607010.htm

    LIU Fang-cheng, CHEN Lu, WANG Hai-dong. Experimental study on dynamic shear modulus and damping ratio of sand-rubber mixture by cyclic simple shear test[J]. Rock and Soil Mechanics, 2016, 37(7): 1903-1913. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607010.htm
    [18]
    SAMAN Y S, MONA R. Effect of seismic isolation by rubber soil mixture on seismic demand of steel moment frame in near fault area[J]. Structure and Steel, 2012, 7(10): 41-60.
    [19]
    ABDELHALEEM A M, EL-SHERBINY R M, LOTFY H, et al. Evaluation of rubber/sand mixtures as replacement soils to mitigate earthquake induced ground motions[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2013, Paris.
    [20]
    PITILAKIS K, KARAPETROU S, TSAGDI K. Numerical investigation of the seismic response of RC buildings on soil replaced with rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2015,79: 237-252.
    [21]
    BRUNET S, DE LA LLERA J C, KAUSEL E. Non-linear modeling of seismic isolation systems made of recycled tire-rubber[J]. Soil Dynamics and Earthquake Engineering, 2016(85): 134-145.
    [22]
    岁小溪. 橡胶颗粒-砂混合物的隔震性能研究[D]. 长沙: 湖南大学, 2009.

    SUI Xiao-xi. The Study on Seismic Isolation Performance of Granulated Rubber-Sand Mixtur[D]. Changsha: Master Dissertation of Hunan University, 2009. (in Chinese)
    [23]
    刘方成, 吴孟桃, 陈巨龙, 等. 土工格室加筋对橡胶砂动力特性影响的试验研究[J]. 岩土工程学报, 2017, 39(9): 1616-1625. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709011.htm

    LIU Fang-cheng, WU Meng-tao, CHEN Ju-long, et al. Experimental study on influence of geo-cell reinforcement on dynamic properties of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1616-1625. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709011.htm
    [24]
    刘方成, 张永富, 周亚栋. 土工格室加筋橡胶砂垫层隔震试验研究[J]. 建筑结构学报, 2016, 37(增刊1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2016S1013.htm

    LIU Fang-cheng, ZHANG Yong-fu, ZHOU Ya-dong. Experimental study on isolating performance of geo-cell reinforced rubber-sand mixture cushion[J]. Journal of Building Structures, 2016, 37(S1): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2016S1013.htm
    [25]
    王飞, 袁康, 郭军林, 等. 简易滑移隔震技术在村镇建筑中的应用[J]. 工程抗震与加固改造, 2017, 39(2): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201702019.htm

    WANG Fei, YUAN Kang, GUO Jun-lin, et al. Shaking table model testing of structure suppressing vibration control including soil-structure interaction effects[J]. Earthquake Engineering and Engineering Vibration, 2017, 39(2): 122-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201702019.htm
    [26]
    陈国兴, 王志华, 宰金珉. 考虑土与结构相互作用效应的结构减震控制大型振动台模型试验研究[J]. 地震工程与工程振动, 2001, 21(4): 117-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200104019.htm

    CHEN Guo-xing, WANG Zhi-hua, ZAI Jin-min. Shaking table model testing of structure suppressing vibration control including soil-structure interaction effects[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(4): 117-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200104019.htm
    [27]
    吕西林, 陈跃庆. 高层建筑结构-地基动力相互作用效果的振动台试验对比研究[J]. 地震工程与工程振动, 2002, 22(2): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200202006.htm

    LÜ Xi-lin, CHEN Yue-qing. Study on effect of soil-structure interaction by shaking table test[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(2): 42-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200202006.htm
    [28]
    陈跃庆, 吕西林, 李培振, 等. 不同土性的地基-结构动力相互作用振动台模型试验对比研究[J]. 土木工程学报, 2006, 39(5): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200605008.htm

    CHEN Yue-qing, LÜ Xi-lin, LI Pei-zhen, et al. Comparative study on the dynamic soil-structure interaction system with various soils by using shaking table model tests[J]. China Civil Engineering Journal, 2006, 39(5): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200605008.htm
    [29]
    孙海峰, 景立平, 王宁伟, 等. 振动台多功能叠层剪切箱研制[J]. 岩石力学与工程学报, 2011, 30(12): 2498-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112015.htm

    SUN Hai-feng, JING Li-ping, WANG Ning-wei, et al. Development of multifunctional laminar shear container for shaking table test[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2498-2506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112015.htm
  • Cited by

    Periodical cited type(4)

    1. 刘亚如,陈旋,王朝雅. 建筑隔震技术研究综述. 江西建材. 2024(06): 9-10 .
    2. 尹志勇,孙海峰,景立平,董瑞,徐琨鹏. 基于玻璃珠-砂垫层的岩土隔震系统隔震效果影响因素分析. 地震工程与工程振动. 2022(05): 237-248 .
    3. 庄海洋,于旭,刘英. 土-桩-隔震结构非线性动力相互作用分析方法综述. 震灾防御技术. 2022(04): 632-642 .
    4. 孙海峰,尹志勇,景立平,董瑞,徐琨鹏. 输入地震动对砂垫层岩土隔震系统隔震效果的影响. 地震工程与工程振动. 2021(06): 222-230 .

    Other cited types(1)

Catalog

    Article views (295) PDF downloads (256) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return