• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, LI Jin, HU Yuan-xin. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947-1954. DOI: 10.11779/CJGE202010021
Citation: YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, LI Jin, HU Yuan-xin. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947-1954. DOI: 10.11779/CJGE202010021

Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface

More Information
  • Received Date: January 07, 2020
  • Available Online: December 07, 2022
  • The shear strength of the interface between the fill and the underlying bedrock is an important factor to control the stability of high fill or accumulation slopes. The value of the interface strength parameter is one of the important parameters for the design of high backfills. The effect of the contact surface roughness on the shear mechanical properties of the soil-rock mixture-bedrock contact surface is explored through the systematic large-scale indoor direct shear tests.The test results show that under the action of low normal stress, the shear stress-shear displacement curve shows strain hardening in the early stage and plastic strain in the later stage, and the greater the roughness of the contact surface, the more the contact surface deforms when shear failure occurs. Under the action of high normal stress, the curve shows strain hardening without obvious peaks. Under the same normal stress level, the greater the contact surface roughness, the greater the shear stiffness of the soil-rock mixture-base rock interface. The crushing morphology of the rock at the shear interface includes three types: complete crushing, partial crushing, and surface abrasion. As the contact surface roughness increases, the total number of rock crushing at the shear interface also increases. The shear strength, internal friction angle and apparent cohesion of the contact surface increase with the increase of the roughness of the contact surface. Compared with the internal friction angle, the apparent cohesion of the contact surfaces increases significantly. The roughness of the contact surface has an effect on the width of the shear band, which shows that the larger the roughness of the contact surface is, the wider the shear band is.
  • [1]
    张强, 汪小刚, 赵宇飞, 等. 土石混合体三维细观结构随机重构及其力学特性颗粒流数值模拟研究[J]. 岩土工程学报, 2017, 41(1): 60-69. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901009.htm

    ZHANG Qiang, WANG Xiao-gang, ZHAO Yu-fei, et al. Random reconstruction of three- dimensional micro structure of soil rock mixture and numerical simulation of its mechanical properties particle flow[J]. Chinese Journal of geotechnical Engineering, 2017, 41(1): 60-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901009.htm
    [2]
    徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56. doi: 10.3969/j.issn.1000-3665.2009.04.012

    XU Wen-jie, HU Rui-lin. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology and Engineering Geology, 2009, 36(4): 50-56. (in Chinese) doi: 10.3969/j.issn.1000-3665.2009.04.012
    [3]
    李天斌, 刘吉, 任洋, 等. 预加固高填方边坡的滑动机制:攀枝花机场12#滑坡[J]. 工程地质学报, 2012, 20(5): 723-731. doi: 10.3969/j.issn.1004-9665.2012.05.011

    LI Tian-bin, LIU Ji, REN Yang, et al. Sliding mechanism of pre reinforced high fill slope: Panzhihua airport No. 12 landslide[J]. Journal of Engineering Geology, 2012, 20(5): 723-731. (in Chinese) doi: 10.3969/j.issn.1004-9665.2012.05.011
    [4]
    刘桂琴, 王子玉, 高振鲲. 贵州某高填方滑塌变形监测分析[J]. 人民长江, 2007(11): 148-149, 158. doi: 10.3969/j.issn.1001-4179.2007.11.057

    LIU Gui-qin, WANG Zi-yu, GAO Zhen-kun. Monitoring and analysis of a high fill landslide in Guizhou[J]. People's Yangtze River, 2007(11): 148-149, 158. (in Chinese) doi: 10.3969/j.issn.1001-4179.2007.11.057
    [5]
    张嘎, 张建民. 粗粒土与结构接触面单调力学特性的试验研究[J]. 岩土工程学报, 2004, 26(1): 21-25. doi: 10.3321/j.issn:1000-4548.2004.01.003

    ZHANG Ga, ZHANG Jian-min. Experimental study on monotonic mechanical properties of interface between coarse-grained soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 21-25. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.01.003
    [6]
    ZHANG G, ZHANG J M. Large-scale apparatus for monotonic and cyclic soil-structure interface test[J]. Geotech Test J, 2006, 29(5): 401-408.
    [7]
    BORANA L, YIN J H, SINGH D N, et al. Interface behavior from suction controlled direct shear test on completely decomposed granitic soil and steel surfaces[J]. Int J Geomech, 2016, 16(6): 1-14.
    [8]
    BORANA L, YIN J H, SINGH D N, et al. Influence of matric suction and counterface roughness on shearing behavior of completely decomposed granitic soil and steel interface[J]. Indian Geotech J, 2016, 47(2): 150-160.
    [9]
    石熊, 张家生, 刘蓓, 等. 红黏土土与混凝土接触面剪切特性试验研究[J]. 中南大学学报(自然科学版), 2015, 46(5): 1826-1831.

    SHI Xiong, ZHANG Jia-sheng, LIU Bei, et al. Experimental study on shear characteristics of interface between red clay and concrete[J]. Journal of Central South University (Natural Science Edition), 2015, 46(5): 1826-1831. (in Chinese)
    [10]
    陈俊桦, 张家生, 李键. 接触面粗糙度对红黏土-混凝土接触面力学性质的影响[J]. 中南大学学报(自然科学版), 2016(47): 1682-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605030.htm

    CHEN Jun-hua, ZHANG Jia-sheng, LI Jian. Effect of interface roughness on mechanical properties of red clay concrete interface[J]. Journal of Central South University (Natural Science Edition), 2016(47): 1682-688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201605030.htm
    [11]
    张吉顺, 华斌. 土与不同桩侧表面粗糙度接触面剪切试验研究[J]. 结构工程师, 2011, 27(3): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201103021.htm

    ZHANG Ji-shun, HUA Bin. Shear test research on contact surface between soil and different pile side surface roughness[J]. Structural Engineer, 2011, 27(3): 118-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201103021.htm
    [12]
    陈静, 李邵军, 孟凡震, 等. 三峡库区滑坡土石混合体与桩的接触面力学特性试验研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2888-2895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1040.htm

    CHEN Jing, LI Shao-jun, MENG Fan-zhen, et al. Experimental study on the mechanical properties of the interface between the landslide soil rock mixture and the pile in the Three Gorges Reservoir Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2888-2895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1040.htm
    [13]
    CEN D, HUANG D, REN F. Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface[J]. Acta Geotechnica, 2016, 12(2): 391-413.
    [14]
    水利水电工程粗粒土试验规程:DL/T 5356—2006[S]. 2006.

    Code for Coarse-Grained Soil Test for Hydropower and Water Conservancy Engineering: DL/T 5356—2006[S]. 2006. (in Chinese)
    [15]
    刘新荣, 涂义亮, 王鹏, 等. 基于大型直剪试验的土石混合体颗粒破碎特征研究[J]. 岩土工程学报, 2017, 39(8): 1425-1434. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708013.htm

    LIU Xin-rong, TU Yi-liang, WANG Peng, et al. Study on particle breakage characteristics of soil rock mixture based on large-scale direct shear test[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1425-1434. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201708013.htm
    [16]
    赵春风, 龚辉, 赵程, 等. 考虑法向应力历史的茹土一混凝土界面弹塑性分析[J]. 岩石力学与工程学报, 2012, 31(4): 848-855.

    ZHAO Chun-feng, GONG Hui, ZHAO Cheng, et al. Elastoplastic analysis of Ru Tu concrete interface considering normal stress history[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 848-855. (in Chinese)
    [17]
    杨忠平, 李万坤, 胡元鑫, 等. 压实系数对粗粒土剪切特性的影响[J]. 地下空间与工程学报, 2017, 13(2): 348-356. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201702010.htm

    YANG Zhong-ping, LI Wan-kun, HU Yuan-xin, et al. Effect of compaction coefficient on shear properties of coarse-grained soil[J]. Journal of Underground Space and Engineering, 2017, 13(2): 348-356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201702010.htm
    [18]
    陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34(12): 3491-3499. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    LU Yong, ZHOU Cuo-qing, XIA Chun-hong, et al. Effect of shape scale on characteristics of coarse grained soil-structural interface under medium and high pressures[J]. Rock and Soil Mechanics, 2013, 34(12): 3491-3499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm
    [19]
    张俊峰, 王协群, 邹维列, 等. 土-格栅界面强度参数和剪切刚度试验研究[J]. 长江科学院院报, 2014, 31(3): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201403013.htm

    ZHANG Jun-feng, WANG Xie-qun, ZOU Wei-li, et al. Experimental study on strength parameters and shear stiffness of soil grid interface[J]. Journal of Changjiang Academy of Sciences, 2014, 31(3): 77-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201403013.htm
    [20]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [21]
    马林. 钙质土的剪切特性试验研究[J]. 岩土力学, 2016(增刊1): 309-316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1041.htm

    MA Lin. Experimental study on shear properties of calcareous soil[J]. Geotechnical Mechanics, 2016(S1): 309-316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1041.htm
  • Related Articles

    [1]CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
    [2]HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng. Particle breakage of rockfill materials under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1753-1760. DOI: 10.11779/CJGE201710001
    [3]CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
    [4]HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038
    [5]CAI Zheng-yin, LI Xiao-mei, HAN Lin, GUAN Yun-fei. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. DOI: 10.11779/CJGE201608001
    [6]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [7]LIU Si-hong, HUANG Ming-kun, WANG Zi-jian, KONG Wei-yao, XIE Hao, WANG Yi-shu. Simple shear tests on breakable rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1503-1508. DOI: 10.11779/CJGE201508021
    [8]CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
    [9]CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495.
    [10]KONG Dezhi, ZHANG Bingyin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469.
  • Cited by

    Periodical cited type(25)

    1. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
    2. 王钰轲,陈浩,宋迎宾,王振海,钟燕辉,张蓓. 大豆脲酶诱导碳酸钙固化黄河泥沙水稳定性试验研究. 水利学报. 2024(01): 71-79 .
    3. 亓永帅,高玉峰,何稼,周云东,严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究. 岩土工程学报. 2024(04): 823-832 . 本站查看
    4. 倪静,韩晓婷,贺青青,耿雪玉. 黄原胶-粉煤灰联合处理酸污染土试验研究. 长江科学院院报. 2024(04): 111-118 .
    5. 王欢,张佳伟,郭合家. EICP改良膨胀土的物理力学性质试验研究. 土木与环境工程学报(中英文). 2024(05): 109-116 .
    6. 董旭光,方礼鑫,马渊博,胡倩倩,李瑞瑞. 大豆脲酶诱导碳酸钙固化黄土的强度试验研究. 地震工程学报. 2024(05): 1009-1020 .
    7. 褚文杰,李驰,武慧敏,高瑜. 土豆脲酶提取及基于酶诱导碳酸钙沉淀技术对风积沙改良的方法. 土木与环境工程学报(中英文). 2023(02): 74-80 .
    8. 吕家栋,赵立财. 黄原胶改善黏土断裂性能研究. 人民长江. 2023(04): 205-210+217 .
    9. 任廷婕,袁立敏,高永,王春颖,徐艳艳. 环保型固沙材料的研究进展. 中国沙漠. 2023(03): 160-168 .
    10. 张建伟,李想,石磊,尹悦. 废弃口罩对EICP固化砂土力学特性的影响. 河南大学学报(自然科学版). 2023(03): 359-366 .
    11. 陆爱灵,朱东云,张宏,曹函,张婧. EICP联合生物炭固化修复重金属污染土试验. 环境工程. 2023(08): 176-180 .
    12. 袁嘉茂,高永,李婉娇,任怀新,吴振亮. 生物诱导碳酸钙土体固化技术在防沙领域研究进展. 广东水利水电. 2023(09): 75-80 .
    13. 王灏喆,武钢义,代育恒,黄灿,常少华. 基于响应面法的EICP-PVA固化粉砂土优化试验研究. 公路. 2023(11): 264-272 .
    14. 赵轩,刘光宇,胡天林,赵璧,吕刚锋. EICP固化砂土强度特性试验研究. 水利与建筑工程学报. 2023(06): 114-121 .
    15. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 .
    16. 徐银龙,郑文杰,王琳,薛中飞,谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究. 化工学报. 2022(05): 2222-2232 .
    17. 曹光辉,刘士雨,蔡燕燕,俞缙,孙志龙. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究. 岩土力学. 2022(08): 2241-2252 .
    18. 郑文杰,胡文乐,袁可,文少杰. 脲酶矿化作用机制及其提升仿古黏土砖瓦阻水性能研究. 岩土力学. 2022(S2): 255-264 .
    19. 范广才,缪林昌,孙潇昊,王恒星,吴林玉. 脲酶抑制剂对EICP防风固沙效果的影响研究. 防灾减灾工程学报. 2022(05): 1019-1027 .
    20. 原华,刘帅星,刘康. EICP联合Na-Mt固化粉砂抗剪特性. 中国科技论文. 2022(12): 1358-1362+1375 .
    21. 王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 .
    22. 原华,刘康,原耀楠,冯佳星. 大豆脲酶诱导碳酸钙沉淀的多因素影响分析. 人工晶体学报. 2021(02): 375-380 .
    23. 何想,刘汉龙,韩飞,马国梁,赵常,楚剑,肖杨. 微生物矿化沉积时空演化的微流控芯片试验研究. 岩土工程学报. 2021(10): 1861-1869 . 本站查看
    24. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 .
    25. 何稼,吴敏,孟浩,亓永帅,高玉峰. 生物固土用于防风固沙的研究进展. 高校地质学报. 2021(06): 687-696 .

    Other cited types(23)

Catalog

    Article views (434) PDF downloads (323) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return