• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Shu-han, ZHOU Wei, MA Gang, LIU Jia-ying, QI Tian-qi. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. DOI: 10.11779/CJGE202010014
Citation: YANG Shu-han, ZHOU Wei, MA Gang, LIU Jia-ying, QI Tian-qi. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. DOI: 10.11779/CJGE202010014

Mechanism of inter-particle friction effect on 3D mechanical response of granular materials

More Information
  • Received Date: January 08, 2020
  • Available Online: December 07, 2022
  • The inter-particle friction is regarded as an important factor that affects the stress and deformation characteristics of granular materials. The existing researches mainly focus on the influences of inter-particle friction on the accumulation characteristics and the macro shear strength, but the mechanism of its influences on the granular materials under the complex stress path has not yet been clarified. A series of true triaxial tests on granular materials are carried out by using the discrete element method (DEM), and the friction coefficient μ is changed to reflect the effects of inter-particle friction on the macro-mechanical properties. The prediction capability of four three-dimensional strength criteria under different inter-particle frictions is discussed, and it is found that the Lade-Duncan and Matsuoka-Nakai criteria have better prediction capability when 0.2<μ≤0.5. In addition, the stress tensors, the distribution of coordination numbers and the fabric tensors of strong and weak contact networks (divided by average contact force) are also studied. The results show that with the increase of inter-particle friction μ, the number of particles forming "force chains" in the strong contact network is basically unchanged, but the normal contact force and normal contact force anisotropy in the strong contact network increases significantly, which mainly causes the enhancement of the macro shear strength. The distribution of coordination numbers of the weak contact network changes greatly with the value of μ, which contributes significantly to the increase of the dilatancy of the particle system.
  • [1]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Gang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [2]
    程展林, 丁红顺, 吴良平. 粗粒土试验研究[J]. 岩土工程学报, 2007, 29(8): 1151-1158. doi: 10.3321/j.issn:1000-4548.2007.08.006

    CHENG Zhan-lin, DING Hong-shun, WU Liang-ping. Experimental study on mechanical behaviour of granular material[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.006
    [3]
    张嘎, 王刚, 尹振宇, 等. 土的基本特性及本构关系[C]//第十三届全国土力学及岩土工程学术大会论文集, 2019, 天津: 1-15.

    ZHANG Ga, WANG Gang, YIN Zhen-yu, et al. A critical review on the research of fundamental behavior and constitutive relationship of the soil[C]//Proc of the 13th Chinese National Conference on Soil Mechanics and Geotechnical Engineering, 2019, Tianjin: 1-15. (in Chinese)
    [4]
    蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [5]
    ANTONY S J, KRUYT N P. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media[J]. Physical Review E, 2009, 79(3): 031308. doi: 10.1103/PhysRevE.79.031308
    [6]
    刘嘉英, 周伟, 马刚, 等. 颗粒材料三维应力路径下的接触组构特性[J]. 力学学报, 2019, 51(1): 26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901004.htm

    LIU Jia-ying, ZHOU Wei, MA Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201901004.htm
    [7]
    周伟, 刘东, 马刚, 等. 基于随机散粒体模型的堆石体真三轴数值试验研究[J]. 岩土工程学报, 2012, 34(4): 748-755. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204027.htm

    ZHOU Wei, LIU Dong, MA Gang, et al. Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204027.htm
    [8]
    马刚, 周伟, 常晓林, 等. 堆石体三轴剪切试验的三维细观数值模拟[J]. 岩土工程学报, 2011, 33(5): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm

    MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. 3D mesoscopic numerical simulation of traxial shear tests for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105017.htm
    [9]
    常晓林, 马刚, 周伟, 等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34(4): 646-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm

    CHANG Xiao-lin, MA Gang, ZHOU Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204011.htm
    [10]
    ZHAO S W, ZHANG N, ZHOU X W, et al. Particle shape effects on fabric of granular random packing[J]. Powder Technology, 2017, 310: 175-186. doi: 10.1016/j.powtec.2016.12.094
    [11]
    ZHOU W, YANG L F, MA G, et al. Macro-micro responses of crushable granular materials in simulated true triaxial tests[J]. Granular Matter, 2015, 17(4): 497-509. doi: 10.1007/s10035-015-0571-3
    [12]
    ROTHENBURG L, KRUYT N P. Critical state and evolution of coordination number in simulated granular materials[J]. International Journal of Solids and Structures, 2004, 41(21): 5763-5774. doi: 10.1016/j.ijsolstr.2004.06.001
    [13]
    ZHOU W, LIU J Y, MA G, et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials[J]. Acta Geotechnica, 2017, 12(3): 527-540. doi: 10.1007/s11440-017-0530-8
    [14]
    ZHOU W, WU W, MA G, et al. Study of the effects of anisotropic consolidation on granular materials under complex stress paths using the DEM[J]. Granular Matter, 2017, 19(4): 1-15.
    [15]
    DAI B B, YANG J, ZHOU C Y. Observed effects of interparticle friction and particle size on shear behavior of granular materials[J]. International Journal of Geomechanics, 2016, 16(1): 1-11.
    [16]
    SANDEEP C S, SENETAKIS K. Effect of young's modulus and surface roughness on the inter-particle friction of granular materials[J]. Materials, 2018, 11(2): 217-227. doi: 10.3390/ma11020217
    [17]
    SENETAKIS K, SANDEEP C S, TODISCO M C. Dynamic inter-particle friction of crushed limestone surfaces[J]. Tribology International, 2017, 111: 1-8. doi: 10.1016/j.triboint.2017.02.036
    [18]
    HUANG X, HANLEY K J, O'SULLIVAN C, et al. Exploring the influence of interparticle friction on critical state behaviour using DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(12): 1276-1297. doi: 10.1002/nag.2259
    [19]
    BARRETO D, O'SULLIVAN C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions[J]. Granular Matter, 2012, 14(4): 505-521. doi: 10.1007/s10035-012-0354-z
    [20]
    KRUYT N P, ANTONY S J. Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation[J]. Physical Review E, 2007, 75(5): 051308. doi: 10.1103/PhysRevE.75.051308
    [21]
    RADJAI F, JEAN M, MOREAU J J, et al. Force distributions in dense two-dimensional granular systems[J]. Physical Review Letters, 1996, 77(2): 274-277. doi: 10.1103/PhysRevLett.77.274
    [22]
    THORNTON C. Quasi-static shear deformation of particulate media[J]. Phil Trans R Soc Lond A, 1998, 356: 2763-2782. doi: 10.1098/rsta.1998.0296
    [23]
    LIU J Y, ZHOU W, MA G. Strong contacts, connectivity and fabric anisotropy in granular materials: a 3D perspective[J]. Powder Technology, 2020, 366: 741-760.
    [24]
    SAZZAD M M, SUZUKI K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM[J]. Granular Matter, 2013, 15(5): 583-593. doi: 10.1007/s10035-013-0422-z
    [25]
    KLOSS C, GONIVA C. LIGGGHTS-open source discrete element simulations of granular materials based on Lammps[J]. Suppl Proc Mater Fabr Prop Charact Model, 2011(2): 781-788.
    [26]
    刘嘉英, 马刚, 周伟, 等. 抗转动特性对颗粒材料分散性失稳的影响研究[J]. 岩土力学, 2017, 38(5): 1472-1480. doi: 10.16285/j.rsm.2017.05.030

    LIU Jia-ying, MA Gang, ZHOU Wei, et al. Impact of rotation resistance on diffuse failure of granular materials[J]. Rock and Soil Mechanics, 2017, 38(5): 1472-1480. (in Chinese) doi: 10.16285/j.rsm.2017.05.030
    [27]
    HUANG X, HANLEY K J, O'SULLIVAN C, et al. DEM analysis of the influence of the intermediate stress ratio on the critical-state behavior of granular materials[J]. Granular Matter, 2014, 16(5): 641-655. doi: 10.1007/s10035-014-0520-6
    [28]
    SKINNER A E. A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles[J]. Géotechnique, 1969, 19(1): 150-157. doi: 10.1680/geot.1969.19.1.150
    [29]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 47(2): 319-329.
    [30]
    YANG Z X, YANG J, WANG L Z. On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis[J]. Granular matter, 2012, 14(3): 433-447. doi: 10.1007/s10035-012-0348-x
    [31]
    PENA A, LIZCANO A, ALONSO M F, et al. Biaxial test simulations using a packing of polygonal particles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(2): 143-160. doi: 10.1002/nag.618
    [32]
    ODA M, KONISHI J, NEMAT N S. Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling[J]. Mechanics of Materials, 1982, 1(4): 269-283. doi: 10.1016/0167-6636(82)90027-8
    [33]
    HEYMAN J, COULOMB C A. Coulomb's analysis of soil thrust[J]. Geotechnical Engineering, 1998, 131(2): 83-88.
    [34]
    DRUCKER D C, PRAGER W. Soil mechanics and plastic analysis or limit design[J]. Q Appl Math, 1952, 10(2): 157-165. doi: 10.1090/qam/48291
    [35]
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. J Geotech Eng Div, 1975, 101(10): 1037-1053. doi: 10.1061/AJGEB6.0000204
    [36]
    MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[C]//Proceedings of the Japan Society of Civil Engineers, 1974: 59-70.
    [37]
    姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学:(E辑): 2004, 34(11): 1283-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm

    YAO Yang-ping, LU De-chun, ZHOU An-nan, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E, 2004, 34(11): 1283-1299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK200411009.htm
    [38]
    俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. doi: 10.3321/j.issn:1000-4548.1994.02.001

    YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.02.001
    [39]
    施维成, 朱俊高, 刘汉龙. 中主应力对砾石料变形和强度的影响[J]. 岩土工程学报, 2008, 30(10): 1449-1453. doi: 10.3321/j.issn:1000-4548.2008.10.005

    SHI Wei-cheng, ZHU Jun-gao, LIU Han-long. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.005
    [40]
    施维成. 粗粒土真三轴试验与本构模型研究[D]. 南京: 河海大学, 2008.

    SHI Wei-cheng. True Triaxial Tests on Coarse-Grained Soils and Study on Constitutive Model[D]. Nanjing: Hohai University, 2008. (in Chinese)
    [41]
    BRATHERG I, RADJAI F, HANSEN A. Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds[J]. Physical Review E, 2002, 66(3): 031303. doi: 10.1103/PhysRevE.66.031303
    [42]
    史旦达, 周健, 刘文白, 等. 砂土直剪力学形状的非圆颗粒模拟与宏细观机理研究[J]. 岩土工程学报, 2010, 32(10): 1557-1565. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201010015.htm

    SHI Dan-da, ZHOU Jian, LIU Wen-bai, et al. Exploring macro- and miro-scale responses of sand in direct shear tests by numerical simulations using non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1557-1565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201010015.htm
    [43]
    SATAKE M. The role of the characteristic line in static soil behavior[C]//IUTAM Symposium on Deformation and Failure of Granular Materials, A A Balkema, 1982, Delft: 63-68.
    [44]
    ODA M. Fabric tensor for discontinuous geological materials[J]. Soils and Foundations, 1982, 22(4): 96-108. doi: 10.3208/sandf1972.22.4_96
    [45]
    THORNTON C, ZHANG L. On the evolution of stress and microstructure during general 3D deviatoric straining of granular media[J]. Géotechnique, 2010, 5: 333-341.
    [46]
    YIMSIRI S, SOGA K. DEM analysis of soil fabric effects on behaviour of sand[J]. Géotechnique, 2010, 60(6): 483-495. doi: 10.1680/geot.2010.60.6.483
    [47]
    GUO N, ZHAO J D. The signature of shear-induced anisotropy in granular media[J]. Computers and Geotechnics, 2013, 47: 1-15. doi: 10.1016/j.compgeo.2012.07.002
  • Related Articles

    [1]CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
    [2]HAN Hua-qiang, CHEN Sheng-shui, FU Hua, ZHENG Cheng-feng. Particle breakage of rockfill materials under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1753-1760. DOI: 10.11779/CJGE201710001
    [3]CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
    [4]HAN Hong-xing, CHEN-Wei, QIU Zi-feng, FU Xu-dong. Numerical simulation of two-dimensional particle flow in broken rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 234-239. DOI: 10.11779/CJGE2016S2038
    [5]CAI Zheng-yin, LI Xiao-mei, HAN Lin, GUAN Yun-fei. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. DOI: 10.11779/CJGE201608001
    [6]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [7]LIU Si-hong, HUANG Ming-kun, WANG Zi-jian, KONG Wei-yao, XIE Hao, WANG Yi-shu. Simple shear tests on breakable rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1503-1508. DOI: 10.11779/CJGE201508021
    [8]CONG Yu, WANG Zai-quan, ZHENG Ying-ren, FENG Xia-ting. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. DOI: 10.11779/CJGE201506009
    [9]CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495.
    [10]KONG Dezhi, ZHANG Bingyin, SUN Xun. Triaxial tests on particle breakage strain of artificial rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 464-469.
  • Cited by

    Periodical cited type(25)

    1. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
    2. 王钰轲,陈浩,宋迎宾,王振海,钟燕辉,张蓓. 大豆脲酶诱导碳酸钙固化黄河泥沙水稳定性试验研究. 水利学报. 2024(01): 71-79 .
    3. 亓永帅,高玉峰,何稼,周云东,严柏杨. 可溶性大豆多糖对大豆脲酶诱导碳酸钙沉积固化风积沙效果的影响研究. 岩土工程学报. 2024(04): 823-832 . 本站查看
    4. 倪静,韩晓婷,贺青青,耿雪玉. 黄原胶-粉煤灰联合处理酸污染土试验研究. 长江科学院院报. 2024(04): 111-118 .
    5. 王欢,张佳伟,郭合家. EICP改良膨胀土的物理力学性质试验研究. 土木与环境工程学报(中英文). 2024(05): 109-116 .
    6. 董旭光,方礼鑫,马渊博,胡倩倩,李瑞瑞. 大豆脲酶诱导碳酸钙固化黄土的强度试验研究. 地震工程学报. 2024(05): 1009-1020 .
    7. 褚文杰,李驰,武慧敏,高瑜. 土豆脲酶提取及基于酶诱导碳酸钙沉淀技术对风积沙改良的方法. 土木与环境工程学报(中英文). 2023(02): 74-80 .
    8. 吕家栋,赵立财. 黄原胶改善黏土断裂性能研究. 人民长江. 2023(04): 205-210+217 .
    9. 任廷婕,袁立敏,高永,王春颖,徐艳艳. 环保型固沙材料的研究进展. 中国沙漠. 2023(03): 160-168 .
    10. 张建伟,李想,石磊,尹悦. 废弃口罩对EICP固化砂土力学特性的影响. 河南大学学报(自然科学版). 2023(03): 359-366 .
    11. 陆爱灵,朱东云,张宏,曹函,张婧. EICP联合生物炭固化修复重金属污染土试验. 环境工程. 2023(08): 176-180 .
    12. 袁嘉茂,高永,李婉娇,任怀新,吴振亮. 生物诱导碳酸钙土体固化技术在防沙领域研究进展. 广东水利水电. 2023(09): 75-80 .
    13. 王灏喆,武钢义,代育恒,黄灿,常少华. 基于响应面法的EICP-PVA固化粉砂土优化试验研究. 公路. 2023(11): 264-272 .
    14. 赵轩,刘光宇,胡天林,赵璧,吕刚锋. EICP固化砂土强度特性试验研究. 水利与建筑工程学报. 2023(06): 114-121 .
    15. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 .
    16. 徐银龙,郑文杰,王琳,薛中飞,谢毅鑫. 壳聚糖联合酶诱导碳酸盐沉淀处理铜废水的劣化现象和强化机理研究. 化工学报. 2022(05): 2222-2232 .
    17. 曹光辉,刘士雨,蔡燕燕,俞缙,孙志龙. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究. 岩土力学. 2022(08): 2241-2252 .
    18. 郑文杰,胡文乐,袁可,文少杰. 脲酶矿化作用机制及其提升仿古黏土砖瓦阻水性能研究. 岩土力学. 2022(S2): 255-264 .
    19. 范广才,缪林昌,孙潇昊,王恒星,吴林玉. 脲酶抑制剂对EICP防风固沙效果的影响研究. 防灾减灾工程学报. 2022(05): 1019-1027 .
    20. 原华,刘帅星,刘康. EICP联合Na-Mt固化粉砂抗剪特性. 中国科技论文. 2022(12): 1358-1362+1375 .
    21. 王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 .
    22. 原华,刘康,原耀楠,冯佳星. 大豆脲酶诱导碳酸钙沉淀的多因素影响分析. 人工晶体学报. 2021(02): 375-380 .
    23. 何想,刘汉龙,韩飞,马国梁,赵常,楚剑,肖杨. 微生物矿化沉积时空演化的微流控芯片试验研究. 岩土工程学报. 2021(10): 1861-1869 . 本站查看
    24. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 .
    25. 何稼,吴敏,孟浩,亓永帅,高玉峰. 生物固土用于防风固沙的研究进展. 高校地质学报. 2021(06): 687-696 .

    Other cited types(23)

Catalog

    Article views (346) PDF downloads (167) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return