• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Hao-xiang, WANG Ming-yang, QI Cheng-zhi, LI Jie. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849-1857. DOI: 10.11779/CJGE202010010
Citation: CHEN Hao-xiang, WANG Ming-yang, QI Cheng-zhi, LI Jie. Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1849-1857. DOI: 10.11779/CJGE202010010

Mechanism of energy adjustment and balance of rock masses near a deep circular tunnel

More Information
  • Received Date: November 27, 2019
  • Available Online: December 07, 2022
  • During the excavation of deep tunnels, the adjustment and balance of energy have a significant influence on the mechanical behavior of the surrounding rock masses. Understanding the energy changes in the surrounding rocks will facilitate the prevention of geotechnical disasters and the optimization of supporting schemes. The deformation and failure modes of the surrounding rock masses around a deep-level circular tunnel are analyzed by considering the stress conditions and deformation compatibility. The mechanism of energy adjustment and laws of energy transmission and transformation in the surrounding rock masses under quasi-static unloading condition are investigated. The energy balance in the surrounding rock masses is proved rigorously from the mathematical viewpoint, and the physical interpretations for each energy component are given. The results indicate that the input external energy from far region is transferred to near region in the form of work done by radial stress. The input external energy can be divided into three parts: the potential energy stored in the rock masses, the energy dissipated by plastic deformation and the work done by pressure of rock masses that will transfer into potential energy in supporting (or kinetic energy of the surrounding rock). The adjustment process of the whole energy accords with conservation of energy.
  • [1]
    钱七虎. 深部地下空间开发中的关键科学问题[M]//钱七虎院士论文选集. 北京: 科学出版社, 2007.

    QIAN Qi-hu. The Critical Issues in the Development of Deep Underground Space[M]//Selections from Academician Qian Qihu's Theses. Beijing: Science Press, 2007. (in Chinese)
    [2]
    尤明庆, 华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002, 21(6): 778-781. doi: 10.3321/j.issn:1000-6915.2002.06.004

    YOU Qing-ming, HUA An-zeng. Energy analysis on failure process of rock specimens[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(6): 778-781. (in Chinese). doi: 10.3321/j.issn:1000-6915.2002.06.004
    [3]
    华安增. 地下工程周围岩体能量分析[J]. 岩石力学与工程学报, 2003, 22(7): 1054-1059. doi: 10.3321/j.issn:1000-6915.2003.07.002

    HUA An-zeng. Energy analysis of surrounding rocks in underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1054-1059. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.07.002
    [4]
    王明洋, 陈昊祥, 李杰, 等. 深部巷道分区破裂化计算理论与实测对比研究[J]. 岩石力学与工程学报, 2018, 37(10): 2209-2218. doi: 10.13722/j.cnki.jrme.2018.0458

    WANG Ming-yang, CHEN Hao-xiang, LI Jie, et al. Theoretical research for zonal disintegration of rock mass around deep tunnels and its comparison with in-situ observation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2209-2218. (in Chinese) doi: 10.13722/j.cnki.jrme.2018.0458
    [5]
    陈昊祥, 王明洋, 李杰. 深部岩体变形破坏的特征能量因子与应用[J]. 爆炸与冲击, 2019, 39(8): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908003.htm

    CHEN Hao-xiang, WANG Ming-yang, LI Jie. Characteristic energy factor of the deep rock masses and its application[J]. Explosion and Shock Wave, 2019, 39(8): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908003.htm
    [6]
    COOK N G W. The basic mechanics of rock bursts[J]. Journal of the South African Institute of Mining and Metallurgy, 1963, 64(10): 71-81.
    [7]
    COOK N G W, HOEK E, PRETORIUS J P G, et al. Rock mechanics applied to the study of rockbursts[J]. Journal of the South African Institute of Mining and Metallurgy, 1966, 66(10): 436-528.
    [8]
    COOK N G W. Seismicity associated with mining[J]. Engineering Geology, 1976, 10(2/3/4): 99-122.
    [9]
    COOK N G W. The design of underground excavattons[C]//Proc 8th Symp on Rock Mech, 1967, New York: 167-193.
    [10]
    WALSH J B. Energy changes due to mining[J]. International Journal of Rock Mechanics and Mining Science, 1977, 14(1): 25-33. doi: 10.1016/0148-9062(77)90559-9
    [11]
    SALAMONM D G. Energy considerations in rock mechanics: fundamental results[J]. Journal of the South African Institute of Mining and Metallurgy, 1984, 84(8): 233-246.
    [12]
    BRADY B H G, BROWN E T. Energy changes and stability in underground mining: design applications of boundary element methods[J]. Transactions of the Institution of Mining and Metallurgy, 1981, 90: 61-68.
    [13]
    BRADY B H G, BROWN E T. Rock Mechanics for Underground Mining[M]. Dordrecht: Springer, 2006: 264-269.
    [14]
    潘岳, 王志强. 岩体动力失稳的功、能增量—突变理论研究方法[J]. 岩石力学与工程学报, 2004, 23(9): 1433-1438. doi: 10.3321/j.issn:1000-6915.2004.09.005

    PAN Yue, WANG Zhi-qiang. Research approach on increment of work and energy: catastrophe theory of rock dynamic destabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1433-1438. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.09.005
    [15]
    潘岳, 王志强. 应变非线性软化的硐室围岩荷载-位移关系研究[J]. 岩土力学, 2004, 25(10): 1515-1521. doi: 10.3969/j.issn.1000-7598.2004.10.001

    PAN Yue, WANG Zhi-qiang. Research on relationship of load-displacement for cavern surrounding rock with strain nonlinear softening[J]. Rock and Soil Mechanics, 2004, 25(10): 1515-1521. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.10.001
    [16]
    潘岳, 王志强, 吴敏应. 巷道开挖围岩能量释放与偏应力应变能生成的分析计算[J]. 岩土力学, 2007, 28(4): 663-669. doi: 10.3969/j.issn.1000-7598.2007.04.006

    PAN Yue, WANG Zhi-qiang, WU Min-ying. Analysis and calculation of energy release and deviatoric stress energy generation of surrounding rock in tunnel excavation process[J]. Rock and Soil Mechanics, 2007, 28(4): 663-669. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.04.006
    [17]
    KRAMARENKO V I, REVUZHENKO A F. Flow of energy in a deformed medium[J]. Journal of Mining Science, 1988, 24(6): 536-540. doi: 10.1007/BF02498611
    [18]
    REVUZHENKOR A F, KLISHIN S V. Energy flux lines in a deformable rock mass with elliptical openings[J]. Journal of Mining Science, 2009, 45(3): 201-206.
    [19]
    LU W B, YANG J H, YAN P, et al. Dynamic response of rock mass induced by the transient release of in-situ stress[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53(7): 129-141.
    [20]
    范勇, 卢文波, 严鹏, 等. 地下洞室开挖过程围岩应变能调整力学机制[J]. 岩土力学, 2013, 34(12): 3580-3586. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312036.htm

    FAN Yong, LU Wen-bo, YAN Peng, et al. Mechanism of strain energy adjustment of surrounding rock during excavation of underground caverns[J]. Rock and Soil Mechanics, 2013, 34(12): 3580-3586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312036.htm
    [21]
    FAN Y, LU W B, YAN P, CHEN M, ZHANG Y Z. Transient characters of energy changes induced by blasting excavation of deep-buried tunnels[J]. Tunneling and Underground Space Technology, 2015, 49: 9-17.
    [22]
    SHEMYAKIN E I, KURLENYA M V, OPARIN V N, et al. Zonal disintegration of around underground workings: Part Ⅳ practical applications[J]. Journal of Mining Science, 1989, 25(4): 297-302.
  • Cited by

    Periodical cited type(1)

    1. 赵淑雯,苏琼源,黄亮亮,温彩霞,朱祖浩,郑晶贝,卢佳妮,李楠. 广西典型海湾表层沉积物重金属赋存形态及潜在生态风险. 海洋环境科学. 2025(01): 35-46 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return