• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
KANG Xin, CHEN Zhi-xin, LEI Hang, HU Li-ming, CHEN Ren-peng. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. DOI: 10.11779/CJGE202009022
Citation: KANG Xin, CHEN Zhi-xin, LEI Hang, HU Li-ming, CHEN Ren-peng. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. DOI: 10.11779/CJGE202009022

Effects of particle shape on mechanical performance of sand with 3D printed soil analog

More Information
  • Received Date: August 19, 2019
  • Available Online: December 07, 2022
  • At particle scale, the morphological characteristics have a significant effect on the mechanical responses of sand. To analyze such effect, a modified 3D shape factor S is introduced to quantify the particle shape. The particles with the designed shape are fabricated through the 3D printing technology. The mechanical responses of the particles are obtained in the direct shear tests performed under a range of normal stress levels and relative packing densities. The data analysis shows that the difficulty of estimating the effects of particle shape on strength using 2D shape factors can be effectively overcome by the shape factor S. The maximum and minimum void ratios have internal correlations with the values of S. The comparison of the 3D printed soil analog and natural soil particles demonstrates the serviceability of 3D printed particles as substitutes for sandy materials in the laboratory. In addition, the critical state friction angle is found to increase with the increase of value of S, but both the peak dilation angle and the peak internal friction angle are found to increase initially then decrease after reaching the peak, for the reason that irregularity promotes looser packing. This observation indicates that there exists an optimal particle shape factor of granular materials in nature. Finally, the relationship between S and mechanical properties is established to provide theoretical basis for considering the effects of particle shape in engineering design and numerical simulations.
  • [1]
    MISKIN M Z, JAEGER H M. Adapting granular materials through artificial evolution[J]. Nature Materials, 2013, 12(4): 326-331. doi: 10.1038/nmat3543
    [2]
    THOMAS M C, WILTSHIRE R J, WILLIAMS A T. The use of Fourier descriptors in the classification of particle shape[J]. Sedimentology, 1995, 42(5): 635-645.
    [3]
    HYSLIP J P, VALLEJO L E. Fractal analysis of the roughness and size distribution of granular materials[J]. Engineering Geology, 1997, 48(3): 231-244.
    [4]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geo- environmental Engineering, 2006, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
    [5]
    刘清秉, 项伟, BUDHU M, et al. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011(增刊1): 190-197. doi: 10.16285/j.rsm.2011.s1.121

    LIU Qing-bing, XIANG Wei, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 2011(S1): 190-197. (in Chinese) doi: 10.16285/j.rsm.2011.s1.121
    [6]
    CUI L, O'SULLIVAN C. Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus[J]. Géotechnique, 2006, 56(7): 455-468.
    [7]
    DAI B B, YANG J, ZHOU C Y. Observed effects of interparticle friction and particle size on shear behavior of granular materials[J]. International Journal of Geomechanics, 2016, 16(1): 04015011.
    [8]
    POWRIE W, NI Q, HARKNESS R M, et al. Numerical modelling of plane strain tests on sands using a particulate approach[J]. Géotechnique, 2005, 55(4): 297-306. doi: 10.1680/geot.2005.55.4.297
    [9]
    HANAOR D A H, GAN Y, REVAY M, et al. 3D printable geomaterials[J]. Géotechnique, 2016, 66(4): 323-332.
    [10]
    SU Y F, BHATTACHARYA S, LEE S J, et al. A new interpretation of three-dimensional particle geometry: M-A-V-L[J]. Transportation Geotechnics, 2020, 23: 100328. doi: 10.1016/j.trgeo.2020.100328
    [11]
    MOLLON G, ZHAO J. Generating realistic 3D sand particles using Fourier descriptors[J]. Granular Matter, 2013, 15(1): 95-108. doi: 10.1007/s10035-012-0380-x
    [12]
    KRUMBEIN W C, SLOSS L L. Stratigraphy and Sedimentation[M]. San Francisco: W H Freeman & Co, 1951.
    [13]
    Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions: ASTMD 3080—04—2011[S]. 2011.
    [14]
    SHIBUYA S, MITACHI T, TAMATE S. Interpretation of direct shear box testing of sands as quasi-simple shear[J]. Géotechnique, 1997, 47(4): 769-790. doi: 10.1680/geot.1997.47.4.769
    [15]
    OLSON R E, LAI J. Direct Shear Testing[R]. Taiwan: Advanced Geotechnical Laboratory, Dept. of Construction Engineering, Chaoyang University of Technology, 1989.
    [16]
    FRASER H J. Experimental study of the porosity and permeability of clastic sediments[J]. The Journal of Geology, 1935, 43(8): 910-1010. doi: 10.1086/624388
    [17]
    ISLAM M N, SIDDIKA A, HOSSAIN M B, et al. Effect of particle size on the shear strength behaviour of sands[J]. Australian Geomechanics Journal, 2011, 46(3): 85-95.
    [18]
    BOLTON M D. Strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. doi: 10.1680/geot.1986.36.1.65
    [19]
    BEEN K, JEFFERIES M G, HACHEY J. Critical state of sands[J]. Géotechnique, 1991, 41(3): 365-381.
    [20]
    CHAN L C Y, PAGE N W. Particle fractal and load effects on internal friction in powders[J]. Powder Technology, 1997, 90(3): 259-266.
    [21]
    孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm

    KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110020.htm
    [22]
    AFZALI-NEJAD A, LASHKARI A, SHOURIJEH P T. Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces[J]. Geotextiles and Geomembranes, 2017, 45(1): 54-66.
    [23]
    HIRABAYASHI H, OHMURA A. Micromechanical influence of grain properties on deformation–failure behaviours of granular media by DEM[C]//Geomechanics and Geotechnics of Particulate Media: Proceedings of the International Symposium on Geomechanics and Geotechnics of Particulate Media, 2006, Ube: 173-179.
    [24]
    CORNFORTH D H. Prediction of drained strength of sands from relative density measurement[J]. Astm Special Technical Publications, 1973, 523: 281-303.
  • Related Articles

    [1]Improved circular arc sliding method for basal heave stability of braced excavations in soft soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240330
    [2]SHI Li, NI Ding-yu, YAN Zi-hai, CHEN Juan, HU Min-yun. Strength reduction method for safety coefficient of heave-resistant stability of asymmetrically-loaded excavations in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 13-16. DOI: 10.11779/CJGE2019S1004
    [3]XUE Hai-bin, ZHANG Cong-min, DANG Fa-ning, YIN Xiao-tao, DING Wei-hua. Limit equilibrium analysis method for loess slopes considering spatial-temporal evolution laws of parameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 162-166. DOI: 10.11779/CJGE2018S2033
    [4]QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Stochastic analysis of ultimate bearing capacity of strip footing considering spatial variability of undrained shear strength[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1095-1105. DOI: 10.11779/CJGE201406015
    [5]QIN Hui-lai, CHEN Zu-yu, LIU Li-peng. Basal stability analysis for excavations in soft clay based on upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1611-1619.
    [6]GONG Xiao-nan. Some problems concerning shear strength of soil in soft clay ground[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1596-1600.
    [7]HUANG Mao-song, DU Zuo-long, SONG Chun-xia. Effects of inserted depth of wall penetrationon basal stabilityof foundation pits in clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1097-1103.
    [8]HUANG Maosong, SONG Xiaoyu, QIN Huilai. Basal stability of braced excavations in K0-consolidated soft clay by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 250-255.
    [9]ZHANG Yangsong, CHEN Xinmin. Finite element analysis for slope stability with multi-braced retaining wall through reduction of strength parameters[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1952-1957.
    [10]Jiang Hongwei, Zhao Xihong, Zhang Baoliang. Analysis of Heave Resistant Stability for Deep Braced Excavation in Soft Clay under Anisotropic Condition[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(1): 3-9.
  • Cited by

    Periodical cited type(8)

    1. 王磊,刘化强,李少波,张宇,刘怀谦,陈礼鹏,王安铖. 煤体张开型裂隙演化规律及失稳前兆试验. 中国矿业大学学报. 2024(02): 250-263 .
    2. 王磊,刘化强,陈礼鹏,刘怀谦,李少波,朱传奇,范浩. 煤张开型裂隙三维宏细观演化特征及扰动因素探究. 煤炭科学技术. 2024(05): 71-83 .
    3. 周雷强,司马珂冰,李昊,李佳. 矿用多功能类砂岩质高强度透水混凝土试配试验. 现代矿业. 2024(05): 109-114 .
    4. 李修磊,刁航,陈臣,黄锋,凌天清,曾彬. 压缩荷载作用下岩石类材料裂缝扩展预测理论的改进及验证. 河南理工大学学报(自然科学版). 2024(05): 163-172 .
    5. 高丙丽,曹孝杰. 地震作用下岩石裂纹扩展角度研究. 西安科技大学学报. 2023(05): 980-987 .
    6. 刘建,乔兰,李庆文,赵国彦. 考虑T应力的Ⅰ/Ⅱ型裂纹最大切向应变能密度断裂准则及其验证. 中南大学学报(自然科学版). 2022(06): 2268-2278 .
    7. 竹宇波. 基于黏聚力单元法的单双射孔水力裂缝扩展数值模拟研究. 有色金属工程. 2021(01): 107-115 .
    8. 华文,潘鑫,淦志强,董世明. 基于广义最大周向应变准则的断裂特性研究. 西南石油大学学报(自然科学版). 2021(06): 42-53 .

    Other cited types(13)

Catalog

    Article views (435) PDF downloads (280) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return