Citation: | LIU Fang-cheng, YAO Yu-wen, BU Guo-bin, JING Li-ping, BIN Jia. Effect of particle size ratio of rubber to sand on small strain dynamic characteristics of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1669-1678. DOI: 10.11779/CJGE202009011 |
[1] |
LEE J, SALGADO R, BERNAL A, et al. Shredded tires and rubber–sand as lightweight backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1999, 125(2): 132-141. doi: 10.1061/(ASCE)1090-0241(1999)125:2(132)
|
[2] |
XIAO Y, NAN B, MCCARTNEY J S. Thermal conductivity of sand–tire shred mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019012. doi: 10.1061/(ASCE)GT.1943-5606.0002155
|
[3] |
PATIL U, VALDES J R, EVANS T M. Swell mitigation with granulated tire rubber[J]. Journal of Materials in Civil Engineering, 2011, 23(5): 721-727. doi: 10.1061/(ASCE)MT.1943-5533.0000229
|
[4] |
MEHRJARDIAAB G T. Combined use of geocell reinforcement and rubber–soil mixtures to improve performance of buried pipes[J]. Geotextiles & Geomembranes, 2012, 34: 116-130.
|
[5] |
PITILAKIS K, KARAPETROU S, TSAGDI K. Numerical investigation of the seismic response of RC buildings on soil replaced with rubber-sand mixtures[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 237-252. doi: 10.1016/j.soildyn.2015.09.018
|
[6] |
BRUNET S, DE LA LLERA J C, KAUSEL E. Non-linear modeling of seismic isolation systems made of recycled tire-rubber[J]. Soil Dynamics and Earthquake Engineering, 2016(85): 134-145.
|
[7] |
刘方成, 张永富, 周亚栋. 土工格室加筋橡胶砂垫层隔震试验研究[J]. 建筑结构学报, 2016, 37(增刊1): 93-100. doi: 10.14006/j.jzjgxb.2016.S1.013
LIU Fang-cheng, ZHANG Yong-fu, ZHOU Ya-dong, et al. Experimental study on isolating performance of geo-cell reinforced rubber-sand mixture cushion[J]. Journal of Building Structures, 2016, 37(S1): 93-100. (in Chinese) doi: 10.14006/j.jzjgxb.2016.S1.013
|
[8] |
TSANG H H, PITILAKIS K. Mechanism of geotechnical seismic isolation system: analytical modeling[J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 171-184. doi: 10.1016/j.soildyn.2019.03.037
|
[9] |
MAEDA R, FINNEY B. Water quality assessment of submerged tire-derived aggregate fills[J]. Journal of Environmental Engineering, ASCE, 2018, 144(2): 04017105. doi: 10.1061/(ASCE)EE.1943-7870.0001322
|
[10] |
YOUWAI S, BERGADO D T. Strength and deformation characteristics of shredded rubber tire–sand mixtures[J]. Canadian Geotechnical Journal, 2003, 40(2): 254-264. doi: 10.1139/T02-104
|
[11] |
ZORNBERG J G, CABRAL A R, VIRATJANDR C. Behaviour of tire shred sand mixtures[J]. Canadian Geotechnical Journal, 2004, 41(2): 227-241. doi: 10.1139/t03-086
|
[12] |
SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33: 38-53. doi: 10.1016/j.soildyn.2011.10.003
|
[13] |
刘方成, 陈璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J]. 岩土力学, 2016, 37(7): 1903-1913. doi: 10.16285/j.rsm.2016.07.010
LIU Fang-cheng, CHEN Lu, WANG Hai-dong. Evaluation of dynamic shear modulus and damping ratio of rubber-sand mixture based on cyclic simple shear tests[J]. Rock and Soil Mechanics, 2016, 37(7): 1903-1913. (in Chinese) doi: 10.16285/j.rsm.2016.07.010
|
[14] |
FU R, COOP M R, LI X Q. Influence of particle type on the mechanics of sand–rubber mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2017, 143(9): 1-15.
|
[15] |
FONSECA J, RIAZ A, Bernal-Sanchez J, et al. Particle–scale interactions and energy dissipation mechanisms in sand–rubber mixtures[J]. Géotechnique, 2019, 9(4): 263-268. doi: 10.1680/jgele.18.00221
|
[16] |
LI W, KWOK C Y, SANDEEP C S, et al. Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro- to macro-scales[J]. Powder Technology, 2019, 342: 907-916. doi: 10.1016/j.powtec.2018.10.025
|
[17] |
LEE C, TRUONG Q H, LEE W, et al. Characteristics of rubber-sand particle mixtures according to size ratio[J]. Journal of Materials in Civil Engineering, 2010, 22(4): 323-331. doi: 10.1061/(ASCE)MT.1943-5533.0000027
|
[18] |
EHSANI M, SHARIATMADARI N, MIRHOSSEINI S M. Shear modulus and damping ratio of sand-granulated rubber mixtures[J]. Journal of Central South University, 2015, 22(8): 3159-3167. doi: 10.1007/s11771-015-2853-7
|
[19] |
LI B, HUANG M, ZENG X. Dynamic behavior and liquefaction analysis of recycled-rubber sand mixtures[J]. Journal of Materials in Civil Engineering, 2016, 28(11): 04016122. doi: 10.1061/(ASCE)MT.1943-5533.0001629
|
[20] |
HARDIN B O, DRNEVICH V P. Shear modulus and damping in soil: II design equations and curves[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1972, SM7, 667-692.
|
[21] |
FENG Z Y, SUTTER K G. Dynamic properties of granulated rubber/sand mixtures[J]. Geotechnical Testing Journal, 2000, 23(3): 338-344. doi: 10.1520/GTJ11055J
|
[22] |
SENETAKIS K, ANASTASIADIS A, PITILAKIS K, et al. Dynamic behavior of sand rubber mixtures: part I effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio[J]. Journal of Astm International, 2012, 9(2): 103711. doi: 10.1520/JAI103711
|