• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Li-zhong, LIU Ya-jing, LONG Fan, HONG Yi. Collapse of deep excavations for metro lines in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1603-1611. DOI: 10.11779/CJGE202009004
Citation: WANG Li-zhong, LIU Ya-jing, LONG Fan, HONG Yi. Collapse of deep excavations for metro lines in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1603-1611. DOI: 10.11779/CJGE202009004

Collapse of deep excavations for metro lines in soft clay

More Information
  • Received Date: December 05, 2019
  • Available Online: December 07, 2022
  • In recent decades, numerous deep excavation projects for metro lines and transportation tunnels have been executed in soft clay in urban areas of coastal cities. Collapses of these deep excavations in soft clay are reported from time to time, including the infamous collapses of Nicoll highway excavation for metro circle line in Singapore (2004) and Xianghu excavation for a subway station in Hangzhou (2008). In routine practice, the stability or deformation of an excavation is calculated using the separated approaches, i.e., the limit equilibrium method and the finite element method (FEM), respectively. It is well recognized that the former usually does not consider the effect of excavation width, while the latter usually involves very sophisticated soil models and additional challenges posed by determination of model parameters. These limitations have led to the development of an upper bound method entitled mobilizable strength design (MSD) method by Prof. Bolton in Cambridge University, for predicting stability and deformation of excavations in soft clay in a unified yet simple manner. The authors (Wang & Long, 2014) have recently proposed an improved MSD method (i.e., MMSD method), where a more realistic plastic deformation mechanism is implemented for analyzing the stability of excavations in soft clay. The capability of MMSD for predicting deformation of excavations in soft clay is later verified against the field data of eight case histories (Wang et al., 2018). This study aims to examine the capability of MMSD to predict the collapse of Nicoll highway excavation and Xianghu excavation. It is shown that the MMSD method offers more accurately the prediction for the occurrence of the collapses of the two case histories than the existing limit equilibrium methods (standard method, Hsieh et al's. method and Su et al's. method) and finite element methods, as it accounts for a more realistic deformation mechanism for narrow deep excavations and the strength anisotropy of soft clay.
  • [1]
    张旷成, 李继民. 杭州地铁湘湖站“08.11.15”基坑坍塌事故分析[J]. 岩土工程学报, 2010, 32(增刊1): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1068.htm

    ZHANG Kuang-cheng, LI Ji-min. Accident analysis for “08.11.15” foundation pit collapse of Xianghu Station of Hangzhou metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 338-341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1068.htm
    [2]
    张雪婵. 软土地基狭长型深基坑性状分析[D]. 杭州: 浙江大学, 2012.

    ZHANG Xue-chan. Behavior of Narrow Deep Excavation in Soft Clay[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
    [3]
    李广信, 李学梅. 软黏土地基中基坑稳定分析中的强度指标[J]. 工程勘察, 2009(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201001003.htm

    LI Guang-xin, LI Xue-mei. The shear strength in stability analysis of subway pit in soft clay[J]. Geotechnical Investigation and Surveying, 2009(1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201001003.htm
    [4]
    PUZRIN A M, ALONSO E E, PINYOL N M. Geomechanics of Failures, Chapter 6-Braced Excavation Collapse: Nicoll Highway, Singapore[M]. Dordrecht, the Netherlands: Springer, 2010.
    [5]
    WHITTLE A J, DAVIES R V. Nicoll highway collapse: evaluation of geotechnical factors affecting design of excavation support system[C]//International Conference on Deep Excavations, 2006, Singapore.
    [6]
    CORRAL G, WHITTLE A J. Re-analysis of deep excavation collapse using a generalized effective stress soil model[C]//Earth Retention Conference, 2010, Bellevue: 720-732.
    [7]
    肖晓春, 袁金荣, 朱雁飞. 新加坡地铁环线C824标段失事原因分析(二)——围护体系设计中的错误[J]. 现代隧道技术, 2009, 46(5): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200906005.htm

    XIAO Xiao-chun, YUAN Jin-rong, ZHU Yan-fei. Causation analysis of the collapse on Singapore MRT Circle Line Lot C824 (Part2): Critical Design Errors in Temporary Retaining System[J]. Modern Tunnelling Technology, 2009, 46(6): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200906005.htm
    [8]
    CHEN R P, LI Z C, CHEN Y M, et al. Failure investigation at a collapsed deep excavation in a very sensitive organic soft clay[J]. J Perform Constr Facil, 2015, 29(3): 04014078. doi: 10.1061/(ASCE)CF.1943-5509.0000557
    [9]
    张飞, 李镜培, 孙长安, 等. 软土狭长深基坑抗隆起破坏模式试验研究[J]. 岩土力学, 2016, 37(10): 2825-2832. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610012.htm

    ZHANG Fei, LI Jing-pei, SUN Chang-an, et al. Experimental study of basal heave failure mode of narrow-deep foundation pit in soft clay[J]. Rock and Soil Mechanics, 2016, 37(10): 2825-2832. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610012.htm
    [10]
    GRIFFITHS DV, LANE PA. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387-403. doi: 10.1680/geot.1999.49.3.387
    [11]
    曾国熙. φu=0分析法—一种对于饱和黏性土值得推广应用的方法[J]. 地基处理, 2001, 12(3): 3-18.

    ZENG Guo-xi. On the application of φu=0 analysis for saturated cohesive soils[J]. Ground Improvement, 2001, 12(3): 3-18. (in Chinese)
    [12]
    建筑地基基础设计规范:GB50007—2011[S]. 2011.

    Code for Design of Building Foundation: GB50007—2011[S]. 2011. (in Chinese)
    [13]
    WANG L Z, SHEN K L, YE S H. Undrained shear strength of K0 consolidated soft soils[J]. Int J Geomech, 2008, 8(2): 105-113.
    [14]
    OSMAN A S, BOLTON M D. Ground movement predictions for braced excavations in undrained clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(4): 1865-1876.
    [15]
    龙凡. 上限法分析深厚软土中基坑坑底抗隆起稳定性[D]. 杭州: 浙江大学, 2014.

    LONG Fan. Upper Bound Limit Analysis for Base Stability of Deep Excavation in Soft Clay[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
    [16]
    WANG L Z, LONG F. Base stability analysis of braced deep excavation in undrained anisotropic clay with upper bound theory[J]. Science China Technological Sciences, 2014, 57(9): 1865-1876.
    [17]
    WANG L Z, LIU Y J, HONG Y, et al. Predicting deformation of multipropped excavations in soft clay with amodified mobilizable strength design (MMSD) method[J]. Computers and Geotechnics, 2018, 104: 54-68.
    [18]
    COI Report of the Committee of Inquiry Into the Incident at the MRT Circle Line Worksite that Led Tocollapse of Nicoll Highway on 20 April 2004[R]. Singapore: Ministry of Manpower, 2005.
    [19]
    HSIEH P G, OU C Y, LIU H T. Basal heave analysis of excavations with consideration of anisotropic undrained strength of clay[J]. Can Geotech J, 2008, 45: 788-799.
    [20]
    SU S F, LIAO H J, LIN Y H. Base stability of deep excavation in anisotropic soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 809-819.
    [21]
    LAM S Y, BOLTON M D. Energy conservation as a principle underlying mobilizable strength design for deep excavations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2011, 137(11): 1062-1074.
    [22]
    王浩然, 王卫东, 黄茂松, 等. 基坑变形预测的改进MSD法[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3245-3251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1085.htm

    WANG Hao-ran, WANG Wei-dong, HUANG Mao-song, et al. Modified mobilizable strength design (MSD) method on deformation predictions of foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3245-3251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1085.htm
    [23]
    LAM S. Ground Movements Due to Excavation in Clay: Physical and Analytical Models[D]. Cambridge: University of Cambridge, 2010.
    [24]
    WANG Z W, NG C W W, LIU G B. Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Can Geotech J, 2005, 42(5): 1243-1254.
    [25]
    ISHIHARA K, LEE W F. Forensic Diagnosis for Site Specific Ground Conditions in Deep Excavations of Subway Constructions[M]//COUTINHO R Q, MAYNE P W, eds. Geotechnical and Geophysical Site Characterization. Taylor & Francis, FL 2008, Boca Raton: 31-59.
    [26]
    BJERRUM L. Problems of soil mechanics and construction on soft clays and structurally unstable soils (collapsible expansive and others)[C]//Proceedings of 8th International Conference for Soil Mechanics and Foundation Engineering, 1973, Moscow: 111-159.
  • Cited by

    Periodical cited type(30)

    1. 阴琪翔,侯明姣,程强强,张梦钵. 水泥加固淤泥土力学与抗海水腐蚀性能研究. 化学工程师. 2024(02): 78-82 .
    2. 薛秀丽,朱龙,曾超峰,王硕,陈秋南,郭志广. 墙顶支撑对开挖前抽水引发基坑变形控制效果研究. 工程地质学报. 2024(02): 678-689 .
    3. 王立忠,赖踊卿,洪义,张友虎. 水平受荷桩“p-y+M-θ”分析方法. 岩土工程学报. 2024(05): 905-918 . 本站查看
    4. 刘世彪. 建筑深基坑逆作法施工技术研究. 工程建设与设计. 2024(10): 167-169 .
    5. 孟凯琪,刘志良,徐亮,李春立,李亮,于忠福,高原,李辉. 基于隆起变形分析的基坑坑底抗隆起稳定可靠度分析. 防灾减灾工程学报. 2024(03): 705-714 .
    6. 周越洲,杨慎银,王嵩,许名鑫,周汉香. 深厚淤泥软土地区某基坑坍塌事故分析及处理. 建筑结构. 2024(15): 128-135 .
    7. 孟凯琪,王铭浩,焦力,李亮,徐亮,胡俊,高原. 考虑基坑宽度及软弱土层厚度的基坑抗隆起稳定可靠度研究. 青岛理工大学学报. 2024(04): 35-44 .
    8. 刘毅,王海啸,王斌,周傲,位伟. 基于逐工况反演的基坑围护结构变形分析与探讨. 武汉大学学报(工学版). 2024(09): 1221-1231 .
    9. 覃震林. 超大深基坑的支护设计及变形预测研究. 甘肃科学学报. 2023(01): 93-99+122 .
    10. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 .
    11. 罗程程. 地铁宽基坑围护结构变形规律研究. 广东水利电力职业技术学院学报. 2023(02): 10-14 .
    12. 付鹏,石希,沈杰超,陈韵. 强降雨对粉质黏土地区基坑围护结构变形影响的研究. 建筑结构. 2023(S1): 2898-2901 .
    13. 刘伟,赵亚军,吕朋,朱清鹅,段君义,粟雨,赵抚民. 施工开挖对富水软弱土深基坑变形特性的影响. 建筑结构. 2023(S1): 2784-2789 .
    14. 詹晓波,纪元刚,姚王晶. 矿坑回填区域桩基施工工艺及基坑支护结构变形研究. 地基处理. 2023(04): 354-360 .
    15. 韩昊,李小来,苏毅,金哲,李书炀. 输电铁塔圆状基坑装配式护壁设计方法及影响因素分析. 东北电力技术. 2023(09): 6-12 .
    16. 何烈民,崔春雨,王思瑞,张乾青,郭慧强,高鹏. 深大基坑自动化监测及智能预警平台. 科学技术与工程. 2023(31): 13542-13549 .
    17. 褚为,彭朋,戴也,高立. 预成孔型钢水泥土搅拌桩在某深基坑中的应用. 土工基础. 2023(06): 845-851 .
    18. 芮勇勤,于晓莎. 地铁站间临近联络线基坑施工过程变形力学特性数值模拟. 沈阳建筑大学学报(自然科学版). 2022(01): 33-41 .
    19. 黄华,王胜,刘晓明,谭鑫,周业. 基坑抢险斜撑撑脚稳定性模型实验及数值分析. 科学技术与工程. 2022(04): 1574-1580 .
    20. 高利军. 邻近建筑物基坑开挖变形的特性分析及控制. 工程勘察. 2022(03): 14-21+78 .
    21. 周傲,王斌,李洁涛,周欣,夏文俊. 太湖隧道软土基坑长期稳定性分析与变形预测. 浙江大学学报(工学版). 2022(04): 692-701 .
    22. 倪小东,王琛,唐栋华,陆江发,王晓远,陈万春. 软土地区深基坑超大变形预警及诱因分析. 中南大学学报(自然科学版). 2022(06): 2245-2254 .
    23. 詹晓波,纪元刚,王家鹏,姚王晶. 建筑密集地区深基坑逆作法设计与施工技术研究. 建筑结构. 2022(S1): 3077-3081 .
    24. 周业,王胜,刘晓明,谭鑫,黄华. 新型装配式基坑抢险斜撑稳定性研究. 结构工程师. 2022(05): 140-147 .
    25. 余以强,严鑫,肖旦强,詹伟,胡智. 交通软土地下空间开发工程地质适宜性评价指标体系研究. 科技资讯. 2022(24): 67-71 .
    26. 赵宇,范存新,郭兵,田德新,刘得俊. 软弱地层对狭长深基坑变形的影响研究. 广东土木与建筑. 2021(04): 29-33 .
    27. 张卫中,闫少峰,黄学军,何进江,康钦容. 有机粉质粘土灌注桩孔壁垮塌机理及控制研究. 武汉理工大学学报. 2021(05): 80-84+91 .
    28. 吕仁军,蒋硕. 支护参数对基坑潜在滑移模式与稳定性的影响研究. 能源与环保. 2021(09): 108-113 .
    29. 陈赓华. 呼和浩特地铁2号线气象局站深基坑变形规律分析. 工程机械与维修. 2021(05): 179-181 .
    30. 王小东,张启志,曹中顺. 深基坑无支撑支护技术及其稳定性分析. 应用科技. 2021(06): 116-120 .

    Other cited types(14)

Catalog

    Article views (524) PDF downloads (410) Cited by(44)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return