• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Zhang-rong, CUI Yu-jun, YE Wei-min, WANG Qiong, ZHANG Zhao, CHEN Yong-gui. Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1401-1410. DOI: 10.11779/CJGE202008004
Citation: LIU Zhang-rong, CUI Yu-jun, YE Wei-min, WANG Qiong, ZHANG Zhao, CHEN Yong-gui. Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1401-1410. DOI: 10.11779/CJGE202008004

Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures

More Information
  • Received Date: September 15, 2019
  • Available Online: December 05, 2022
  • The bentonite pellet is considered as an alternative buffer/backfilling material to fill technological voids and empty space in high-level radioactive waste (HLW) repository. The previous studies on the bentonite pellets are carefully reviewed and summarized, including their manufacturing methods, emplacement techniques, thermal conductivity, hydraulic behavior, structural change and mechanical behavior. Correspondingly, the research subjects worth further investigation are put forward. The results in the literatures indicate that the pellets can be manufactured and emplaced using several techniques, which together with size gradation and packing protocol can influence the packing dry density and homogeneity. For the pellet mixtures, the thermal conductivity is mainly governed by dry density, water content and temperature, and the hydro-mechanical behavior is related to size gradation, dry density and temperature. Upon liquid or suction controlled hydration, the initial loose-structured pellet mixtures will gradually transfer to the cemented state and finally present a homogeneous appearance at saturation. However, much longer duration is required before getting a completely homogeneous state. Considering the complexity of the operation conditions in a HLW repository, the improvements on emplacement techniques of the pellets and the investigations on the hydro-mechanical behavior and structural change under the coupled thermo-hydro-chemo-mechanical conditions should be further conducted.
  • [1]
    崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847. doi: 10.3321/j.issn:1000-6915.2006.04.019

    CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
    [2]
    陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水–力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm

    CHEN Yong-gui, JIA Ling-yan, YE Wei-min, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm
    [3]
    WANG Q, TANG A M, CUI Y J, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232-245. doi: 10.1016/j.sandf.2013.02.004
    [4]
    SALO J-P, KUKKOLA T. Bentonite Pellets, an Alternative Buffer Material for Spent Fuel Canister Deposition Holes[R]. Paris: NEA/CEC Workshop “Sealing of Radioactive Waste Repositories” (Braunschweig, Germany), OECD, 1989.
    [5]
    DIXON D, SANDÉN T, JONSSON E, et al. Backfilling of Deposition Tunnels: Use of Bentonite Pellets[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB P-11-44, 2011.
    [6]
    刘樟荣. 高庙子膨润土颗粒混合物的堆积性质与考虑温度影响的水力特性研究[D]. 上海: 同济大学, 2019.

    LIU Zhang-rong. Investigation on the Packing Behaviour and Thermal-Hydraulic Properties of GMZ Bentonite Pellet Mixtures[D]. Shanghai: Tongji University, 2019. (in Chinese)
    [7]
    ANDERSSON L, SANDÉN T. Optimization of Backfill Pellet Properties, ÅSKAR DP2, Laboratory Tests[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB R-12-18, 2012.
    [8]
    MARJAVAARA P, HOLT E, SJÖBLOM V. Customized Bentonite Pellets: Manufacturing, Performance and Gap Filling Properties[R]. Eurajoki: Posiva OY, 2013.
    [9]
    IMBERT C, VILLAR M V. Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration[J]. Applied Clay Science, 2006, 32(3/4): 197-209.
    [10]
    HOFFMANN C, ALONSO E E, ROMERO E. Hydro- mechanical behaviour of bentonite pellet mixtures[J]. Physics and Chemistry of the Earth, 2007, 32(8/9/10/11/12/13/14): 832-849.
    [11]
    KIM C S, MAN A, DIXON D, et al. Clay-Based Pellets for Use in Tunnel Backfill and as Gap Fill in a Deep Geological Repository: Characterisation of Thermal-mechanical Properties[R]. Toronto: Nuclear Waste Management Organisation, 2012.
    [12]
    MOLINERO-GUERRA A, MOKNI N, DELAGE P, et al. In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite[J]. Applied Clay Science, 2017, 135: 538-546. doi: 10.1016/j.clay.2016.10.030
    [13]
    CHEN L, LIU Y M, WANG J, et al. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2014, 172: 57-68. doi: 10.1016/j.enggeo.2014.01.008
    [14]
    张虎元, 王学文, 刘平, 等. 缓冲回填材料砌块接缝密封及愈合研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3605-3614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2019.htm

    ZHANG Hu-yuan, WANG Xue-wen, LIU Ping, et al. Sealing and healing of compacted bentonite block joints in HLW disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3605-3614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2019.htm
    [15]
    陈香波. 颗粒膨润土堆积性质及压实性质研究[D]. 兰州: 兰州大学, 2018.

    CHEN Xiang-bo. Packing and Static Compaction of Pellet Bentonite for HLW Disposal[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
    [16]
    ZHANG Z, YE W M, LIU Z R, et al. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials, 2018, 185: 246-255. doi: 10.1016/j.conbuildmat.2018.07.096
    [17]
    LIU Z R, YE W M, ZHANG Z, et al. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets[J]. Powder Technology, 2019, 351: 92-101. doi: 10.1016/j.powtec.2019.03.038
    [18]
    LIU Z R, YE W M, ZHANG Z, et al. A nonlinear particle packing model for multi-sized granular soils[J]. Construction and Building Materials, 2019, 221: 274-282. doi: 10.1016/j.conbuildmat.2019.06.075
    [19]
    LIU Z R, YE W M, CUI Y J, et al. Investigation on vibration-induced segregation behaviour of crushed GMZ bentonite pellet mixtures[J]. Construction and Building Materials, 2020, 241: 117949. doi: 10.1016/j.conbuildmat.2019.117949
    [20]
    谈云志, 李辉, 彭帆, 等. 膨润土团粒的压实性能研究[J]. 防灾减灾工程学报, 2018, 38(5): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805001.htm

    TANG Yun-zhi, LI Hui, PENG Fan, et al. Compaction properties of bentonite agglomerate[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 773-780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805001.htm
    [21]
    FERRARI A, SEIPHOORI A, RÜEDI J, et al. Shot-clay MX-80 bentonite: An assessment of the hydro-mechanical behaviour[J]. Engineering Geology, 2014, 173: 10-18. doi: 10.1016/j.enggeo.2014.01.009
    [22]
    KÖHLER S, MAYOR J C, NUSSBAUM C, et al. Report of the Construction of the HE-E Experiment[R]. PEBS Report, 2012.
    [23]
    KÖHLER S, MAYOR J C, NUSSBAUM C, et al. Report of the construction of the HE-E experiment[R]. PEBS Report, 2012.
    [24]
    GARCÍA-SIÑERIZ J L, VILLAR M V, REY M, et al. Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation[J]. Engineering Geology, 2015, 192: 33-45. doi: 10.1016/j.enggeo.2015.04.002
    [25]
    MASUDA R, ASANO H, TOGURI S, et al. Buffer construction technique using granular bentonite[J]. Journal of nuclear science and technology, 2007, 44(3): 448-455. doi: 10.1080/18811248.2007.9711307
    [26]
    MARJAVAARA P, KIVIKOSKI H. Filling the gap between buffer and rock in the deposition hole[R]. Eurajoki: Posiva OY, 2011.
    [27]
    ÅBERG A. Effects of Water Inflow on the Buffer: An Experimental Study[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB Rapport R-09-29, 2009.
    [28]
    KIVIKOSKI H, HEIMONEN I, HYTTINEN H. Bentonite Pellet Thermal Conductivity Techniques and Measurements[R]. Eurajoki: Posiva OY, 2015.
    [29]
    马国梁. 膨润土颗粒材料的工程性能研究[D]. 兰州: 兰州大学, 2018.

    MA Guo-liang. Engineering Properties of Granular Bentonite Materials for HLW Disposal[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
    [30]
    WIECZOREK K, MIEHE R, GARITTE B. Thermal Characterisation of HE-E Buffer[R]. PEBS Report, DELIVERABLE (D-N°: 2.2-9), 2013.
    [31]
    MOLINERO-GUERRA A. Experimental and Numerical Characterizations of the Hydro-Mechanical Behavior of a Heterogeneous Material: Pellet/Powder Bentonite Mixture[D]. Paris: University of Paris-Est, 2018.
    [32]
    MOLINERO-GUERRA A, CUI Y J, HE Y, et al. Characterization of water retention, compressibility and swelling properties of a pellet/powder bentonite mixture[J]. Engineering Geology, 2019, 248: 14-21. doi: 10.1016/j.enggeo.2018.11.005
    [33]
    MOLINERO-GUERRA A, DELAGE P, CUI Y J, et al. Water-retention properties and microstructure changes of a bentonite pellet upon wetting/drying; application to radioactive waste disposal[J]. Géotechnique, 2020, 70(3): 199-209. doi: 10.1680/jgeot.17.P.291
    [34]
    VILLAR M V, MARTÍN P L, ROMERO F J. Long-term THM Tests Reports: THM Cells for the HE-E Test: Update of Results Until February 2014[R]. Madrid: CIEMAT, 2014.
    [35]
    KARNLAND O, NILSSON U, WEBER H, et al. Sealing ability of wyoming bentonite pellets foreseen as buffer material-Laboratory results[J]. Physics and Chemistry of the Earth, 2008, 33: S472-S475. doi: 10.1016/j.pce.2008.10.024
    [36]
    MOLINERO GUERRA A, CUI Y J, MOKNI N, et al. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column[J]. Engineering Geology, 2018, 243: 18-25. doi: 10.1016/j.enggeo.2018.06.006
    [37]
    苏振妍. 颗粒膨润土材料持水性能及渗透性能研究[D]. 兰州: 兰州大学, 2019.

    SU Zhen-yan. The Water Retention and Permeability of Granular Bentonite Material for HLW Disposal[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
    [38]
    DIXON D, LUNDIN C, ÖRTENDAHL E, et al. Deep Repository–Engineered Barrier Systems: Half Scale Tests to Examine Water Uptake by Bentonite Pellets in a Block-Pellet Backfill System[R]. Stockholm: Svensk Kärnbränslehantering AB, 2008.
    [39]
    VAN GEET M, VOLCKAERT G, ROELS S. The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture[J]. Applied Clay Science, 2005, 29(2): 73-87. doi: 10.1016/j.clay.2004.12.007
    [40]
    MOLINERO-GUERRA A, AIMEDIEU P, BORNERT M, et al. Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography[J]. Applied Clay Science, 2018, 165: 164-169. doi: 10.1016/j.clay.2018.07.043
    [41]
    叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm
    [42]
    VILLAR M V. EB experiment Laboratory infiltration tests report[R]. Madrid: CIEMAT, 2012.
    [43]
    ZHANG Z, YE W M, LIU Z R, et al. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range[J]. Engineering Geology, 2020, 264: 105383. doi: 10.1016/j.enggeo.2019.105383
    [44]
    PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23: 239-244. doi: 10.1016/S0169-1317(03)00108-X
    [45]
    ALONSO E E, ROMERO E, HOFFMANN C. Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study[J]. Géotechnique, 2011, 61(4): 329-344. doi: 10.1680/geot.2011.61.4.329
    [46]
    ITO H. Compaction properties of granular bentonites[J]. Applied Clay Science, 2006, 31(1/2): 47-55.
    [47]
    GENS A, VALLEJÁN B, SÁNCHEZ M, et al. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling[J]. Géotechnique, 2011, 61(5): 367-386. doi: 10.1680/geot.SIP11.P.015
  • Cited by

    Periodical cited type(21)

    1. 俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
    2. 张连贵,刘峰建,张鑫,郭广礼,李怀展,宫亚强. 采动影响下浅埋输油气管线变形监测与风险性评价方法及应用实践. 金属矿山. 2024(03): 183-189 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 喻文昭,朱鸿鹄,王德洋,谢天铖,裴华富,施斌. 荷载作用下砂土边坡-管道相互作用试验研究. 岩土力学. 2024(05): 1309-1320 .
    5. 崔萧. 基于DVS的地下管网及道路病害监测技术应用. 岩土工程技术. 2024(03): 322-329 .
    6. 庞文彬,郑鑫,葛亮,张凌云,张宁宁. 基于振动提取的沙漠埋地管道弯曲变形监测技术研究. 石油化工自动化. 2024(04): 66-70 .
    7. 李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 .
    8. 胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 .
    9. 朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .
    10. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    11. 卢毅,宋泽卓,刘瑾,卜凡,祁长青. 基于DFOS的通州湾地区地面沉降监测与变形分析. 河海大学学报(自然科学版). 2023(02): 81-88 .
    12. 喻文昭,朱鸿鹄,王德洋,李豪杰,叶霄. 埋地管道竖向隆起破坏研究综述. 防灾减灾工程学报. 2023(02): 189-200 .
    13. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 .
    14. 魏祥龙,尹书冉,夏志康,杨涵苑,左利钦,林青炜. 软体排塌陷弯曲变形的应变响应特征分析. 水运工程. 2023(08): 90-95+138 .
    15. 魏祥龙,杨海亮,左利钦,陆永军,杨涵苑,袁赛瑜. 光纤传感监测护底软体排的可行性探讨. 水电能源科学. 2023(12): 147-151 .
    16. 张鑫,郭广礼,李怀展,张连贵,刘峰建,蒋乾,陈延康. 煤矿开采影响下浅埋输油管线变形及力学响应特性. 科学技术与工程. 2023(35): 15052-15059 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 胡健,雒燕,刘瑾,魏世杰,何承宗,李明阳,张晨阳. 基于FBG机械连接部件微渗漏监测应用. 中国海洋平台. 2022(06): 28-34 .
    19. 施斌,朱鸿鹄,张丹,程刚. 从岩土体原位检测、探测、监测到感知. 工程地质学报. 2022(06): 1811-1818 .
    20. 刘保余,袁龙春,尚博,侯东,蒋勇,赵冰,张东. 长输油气埋地管道外检测技术研究. 管道技术与设备. 2021(03): 31-34 .
    21. 丁志国,龚占龙,盛智勇. FBG传感器在排水管道水位实时监测中的应用. 河北农机. 2021(07): 52-53 .

    Other cited types(7)

Catalog

    Article views (479) PDF downloads (257) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return