• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, HE Ming-wei, LIU Zhen-nan. Experimental study on effects of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1268-1275. DOI: 10.11779/CJGE202007010
Citation: JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, HE Ming-wei, LIU Zhen-nan. Experimental study on effects of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1268-1275. DOI: 10.11779/CJGE202007010

Experimental study on effects of vegetation on water transport and storage in soil cover

More Information
  • Received Date: May 02, 2019
  • Available Online: December 05, 2022
  • Vegetation plays an important role in water storage and release of soil cover and in impermeable capability of soil. A large-scale loess soil cover (30 m×20 m) is built in field. The vegetation is planted in different areas and rainfall tests are carried out. The maximum water storage capacity is measured. The water transport, saturated permeability coefficient, effects of vegetation on water transport and storage capacity are analyzed and compared. The results show that: (1) The theoretical value of available water storage with vegetation is 278.32 mm, the measured one is 259.82 mm, and the latter is 18.5 mm (6.65%) smaller than the former. (2) The vegetation increases the saturated permeability coefficient of root growth area. It is 8.267×10-5 cm/s without vegetation, and is more than 8.267×10-5 cm/s with vegetation. Without vegetation, water is stored in shallow soil layer firstly and gradually infiltrates into deep soil, but it is stored in the whole section of soil with vegetation. (3) The fibrous root and initial vegetation have some influences on water storage capacity of soil cover. The available water storage measured in the tests is 259.82 mm with vegetation and 251.95 mm without vegetation. The former is only 7.87 mm (3.12%) larger than the latter. The total water storage measured in the tests is 381.90 mm with vegetation and 374.03 mm without vegetation. The former is only 7.87 mm (2.10%) larger than the latter. The water storage capacity of soil cover with or without vegetation is similar. It may be that, on one hand, the vegetation with fibrous root system is shallow (0~50 cm), on the other hand, the short growth period of vegetation has no significant effects on soil structure.
  • [1]
    DWYER S F. Construction overview of six landfill cover designs[R]. Albuquerque: Sandia National Laboratories, 2000.
    [2]
    HAUSER V L, WEAND B L, GILL M D. Natural covers for landfills and buried waste[J]. J Environ Eng, 2001, 127(9): 768-775. doi: 10.1061/(ASCE)0733-9372(2001)127:9(768)
    [3]
    张文杰, 耿潇. 垃圾填埋场毛细阻滞型腾发封顶工作机理及性能分析[J]. 岩土工程学报, 2016, 38(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm

    ZHANG Wen-jie, GENG Xiao. Performance and mechanism of capillary-barrier evaportranspiration cover of landfills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 454-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603011.htm
    [4]
    张文杰, 林午, 董林兵. 垃圾填埋场毛细阻滞型腾发封顶模型试验[J]. 岩土力学, 2014, 35(5): 1263-1268. doi: 10.16285/j.rsm.2014.05.025

    ZHANG Wen-jie, LIN Wu, DONG Lin-bing. Model test of a capillary barrier evapotranspiration cover for landfills[J]. Rock and Soil Mechanics, 2014, 35(5): 1263-1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.025
    [5]
    赵慧, 刘川顺, 王伟, 等. 垃圾填埋场腾发覆盖系统控制渗滤效果的研究[J]. 中国给水排水, 2008, 24(9): 86-89. doi: 10.3321/j.issn:1000-4602.2008.09.022

    ZHAO Hui, LIU Chuan-shun, WANG Wei, et al. Study of leachate control effect of evapotranspiration landfill cover system[J]. China Water & Wastewater, 2008, 24(9): 86-89. (in Chinese) doi: 10.3321/j.issn:1000-4602.2008.09.022
    [6]
    陆海军, 栾茂田, 张金利. 垃圾填埋场传统封顶和ET封顶的比较研究[J]. 岩土力学, 2009, 30(2): 509-514. doi: 10.3969/j.issn.1000-7598.2009.02.039

    LU Hai-jun, LUAN Mao-tian, ZHANG Jin-li. Research on comparision between traditional compacted clay and evapotranspiration cover systems of landfill[J]. Rock and Soil Mechanics, 2009, 30(2): 509-514. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.02.039
    [7]
    焦卫国, 詹良通, 季永新, 等. 含非饱和导排层的毛细阻滞覆盖层长期性能分析[J]. 浙江大学学报(工学版), 2019, 53(6): 1101-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906009.htm

    JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al. Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(6): 1101-1109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906009.htm
    [8]
    ALBRIGHT W H, BENSON C H, GEE G W, et al. Field water balance of landfill final covers[J]. Journal of Environmental Quality, 2004, 33(6): 2317-2332. doi: 10.2134/jeq2004.2317
    [9]
    WILLIAM E S, MUNK J, WILLIAM J. Four-year performance evaluation of a pilot-scale evapotranspiration landfill cover in southcentral Alaska[J]. Cold Regions Science and Technology, 2012, 82: 1-7. doi: 10.1016/j.coldregions.2012.03.009
    [10]
    MELCHIOR S, SOKOLLEK V, BERGER K, et al. Results from 18 years of in situ performance testing of landfill cover systems in Germany[J]. Journal of Environmental Engineering, 2010(8): 815-823.
    [11]
    FAYER M J, GEE G W. Multiple-year water balance of soil covers in a semiarid setting[J]. Journal of Environmental Quality, 2006, 35(1): 366-377. doi: 10.2134/jeq2004.0391
    [12]
    BOHNHOFF G L, OGORZALEK A S, BENSON C H. Field data and water-balance predictions for a monolithic cover in a semiarid climate[J]. Journal of Geotechnical and Geo-environmental Engineering, 2009, 135(3): 333-348. doi: 10.1061/(ASCE)1090-0241(2009)135:3(333)
    [13]
    WAUGH W J, SMITH G M. Effects of Root Intrusion at the Burrell, Pennsylvania, Uranium Mill Tailings Disposal Site[R]. Grand Junction: US Department of Energy, 1997.
    [14]
    DEVITT D A, SMITH S D. Root channel macropores enhance downward movement of water in a mojave desert ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99-108. doi: 10.1006/jare.2001.0853
    [15]
    SONG L, LI J H, ZHOU T, et al. Experimental study on unsaturated hydraulic properties of vegetated soil[J]. Ecol Eng, 2017, 103: 207-216. doi: 10.1016/j.ecoleng.2017.04.013
    [16]
    BORDOLOI S, GARG A, SREEDEEP S, et al. Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth[J]. Bioresour. Technol, 2018, 263: 665-677. doi: 10.1016/j.biortech.2018.05.011
    [17]
    李雄威, 孔令伟, 郭爱国. 植被作用下膨胀土渗透和力学特性及堑坡防护机制[J]. 岩土力学, 2013, 34(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301012.htm

    LI Xiong-wei, KONG Ling-wei, GUO Ai-guo. Permeability and mechanical characteristics of expansive soil and cut slope protection mechanism under vegetation action[J]. Rock and Soil Mechanics, 2013, 34(1): 85-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201301012.htm
    [18]
    JOTISANKASA A, SIRIRATTANACHAT T. Effects of grass roots on soil-water retention curve and permeability function[J]. Can Geotech J, 2017, 54: 1612-1622.
    [19]
    NI J J, CHEN X W, NG C W W, et al. Effects of biochar on water retention and matric suction of vegetated soil[J]. Géotechnique Lett, 2018, 8: 124-129. doi: 10.1680/jgele.17.00180
    [20]
    NI J J, BORDOLOI S, SHAOW , et al. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system[J]. Science of the Total Environment, 2020, 712, 136486.
    [21]
    程鹏, 李锦辉, 宋磊. 生态边坡的水力和力学特性分析:试验研究[J]. 岩土工程学报, 2017, 39(10): 1901-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710026.htm

    CHENG Peng, LI Jin-hui, SONG Lei. Hydraulic and mechanical characteristics of ecological slopes: experimental study[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1901-1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201710026.htm
    [22]
    周腾. 含根系土体水力特性的试验与理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHOU Teng. Experimental and Theoretical Research of Hydraulic Properties of Root-Containing Soil[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [23]
    焦卫国, 詹良通, 季永新, 等. 黄土–碎石毛细阻滞覆盖层储水能力实测与分析[J]. 岩土工程学报, 2019, 41(6): 1149-1157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm

    JIAO Wei-guo, ZHANG Liang-tong, JI Yong-xin, et al. Experimental study on the effect of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1149-1157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906022.htm
    [24]
    KHIRE M V, BENSON C H, BOSSCHER P J. Capillary barriers: design variables and water balance[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2000, 126(8): 695-708.
    [25]
    AUBERTIN M, CIFUENTES E, APITHY S A, et al. Analyses of water diversion along inclined covers with capillary barrier effects[J]. Canadian Geotechnical Journal, 2009, 46: 1146-1164.
    [26]
    TAMI D, RAHARDJO H, LEONG E C, et al. Design and laboratory verification of a physical model of sloping capillary barrier[J]. Geotechnical and Geological Engineering, 2004, 41: 814-830.
  • Cited by

    Periodical cited type(5)

    1. 肖泽岸,李康良,段杰云,王启航,郭茂亮. 降温过程中NaCl盐渍土相变的电化学特征. 岩土工程学报. 2025(01): 200-206 . 本站查看
    2. 唐先习,吕闻起,李明泽,王凯,张徐军. 温度对含硫酸钠盐黄土土水特性影响规律研究. 地下空间与工程学报. 2025(01): 131-139 .
    3. 赵再昆,王铁行,金鑫,张亮. 高温作用下非饱和黄土水热迁移试验研究. 岩土工程学报. 2024(01): 151-161 . 本站查看
    4. 肖泽岸,段杰云,李康良,王启航,郭茂亮. 考虑水盐相变的盐渍土基质吸力的温度效应. 农业工程学报. 2024(15): 287-292 .
    5. 李东阳,周星辰,刘波,张千里,刘景宇. 核磁共振无损检测泥岩水分迁移过程的新方法. 矿业科学学报. 2023(05): 654-662 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return