• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhan-qun, YU Li-yuan, LI Guang-lei, SU Hai-jian, JING Hong-wen. Experimental research on dynamic tensile mechanics of limestone after chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1151-1158. DOI: 10.11779/CJGE202006021
Citation: ZHANG Zhan-qun, YU Li-yuan, LI Guang-lei, SU Hai-jian, JING Hong-wen. Experimental research on dynamic tensile mechanics of limestone after chemical corrosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1151-1158. DOI: 10.11779/CJGE202006021

Experimental research on dynamic tensile mechanics of limestone after chemical corrosion

More Information
  • Received Date: August 21, 2019
  • Available Online: December 07, 2022
  • To investigate the dynamic tensile mechanical properties of limestone corroded in the chemical environment, the mixed solution of NaCl and KHSO4 with pH=3 was prepared to corrode limestone samples for different corrosion time, i.e. 30 days, 60 days, 90 days, 120 days and 150 days, respectively. The T2 spectra and porosity of the corroded limestone samples were obtained by nuclear magnetic resonance (NMR) test, and the dynamic tensile test was carried out on corroded limestone samples by using the separated Hopkins compression bar (SHPB). Finally, the variation law of dynamic tensile strength and energy dissipation with corrosion damage degree of limestone was obtained. In addition, microscopic images and mineral contents of samples at different corrosion stages were analyzed by scanning electron microscopy (SEM) and X-ray fluorescence spectrometry (XRF). The result shows that, after being corroded for 150d, the porosity of limestone rises from 0.32% to 5.32% and the corrosion damage degree increases.The deterioration of dynamic tensile strength can be divided into two stages by the slope, with the total decrease extent of 32.52%. Dissipative energy and transmission energy exhibit two-stage decreasing trend and distinct correlation to damage degree. The failure mode evolution of limestone after chemical corrosion changes from the typical splitting failure to the tensile-shear, shear failure and ultimate powders failure. There is a distinct relationship between the macro-mechanical properties and the micro-structure damage of specimens. The research results can provide references for the design and construction of underground engineering.
  • [1]
    谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2177. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm

    XIE He-ping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511001.htm
    [2]
    李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索[J]. 中国有色金属学报, 2017, 27(6): 1236-1262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201706022.htm

    LI Xi-bing, ZHOU Jian, WANG Shao-feng, et al. Review and practice of deep mining for solidmineral resources[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236-1262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201706022.htm
    [3]
    王栋, 李天斌, 蒋良文, 等. 川藏铁路某超深埋隧道地应力特征及岩爆分析[J]. 铁道工程学报, 2017(4): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201704010.htm

    WANG Dong, LI Tian-bin, JIANG Liang-wen, et al. In-situ stress characteristics and rock burst analysis of an ultra-deep buried tunnel on Sichuan-Tibet Railway[J]. Journal of Railway Engineering, 2017(4): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201704010.htm
    [4]
    陈卫忠, 伍国军, 戴永浩, 等. 锦屏二级水电站深埋引水隧洞稳定性研究[J]. 岩土工程学报, 2008, 30(8): 1184-1189. doi: 10.3321/j.issn:1000-4548.2008.08.013

    CHEN Wei-zhong, WU Guo-jun, DAI Yong-hao, et al. Stability analysis ofdiversion tunnel for Jinping II hydropower station[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1184-1189. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.08.013
    [5]
    SETO M, NAG D K, VUTUKURI V S, et al. Effect of chemical additives on the strength of sandstone[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34(3/4): 280.e1-280.e11. https://www.sciencedirect.com/science/article/pii/S1365160997002839.
    [6]
    丁梧秀, 陈建平, 徐桃, 等. 化学溶液侵蚀下灰岩的力学及化学溶解特性研究[J]. 岩土力学, 2015, 36(7): 1825-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507001.htm

    DING Wu-xiu, CHEN Jian-ping, XU Tao, et al. Mechanical and chemical characteristics of limestone during chemical erosion[J]. Rock and Soil Mechanics, 2015, 36(7): 1825-1830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201507001.htm
    [7]
    陈四利, 冯夏庭, 周辉. 化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J]. 岩土力学, 2004, 25(9): 1363-1367. doi: 10.3969/j.issn.1000-7598.2004.09.004

    CHEN Si-li, FENG Xia-ting, ZHOU Hui. Study on triaxialmeo-failure mechanism and damage variables of sandstone under chemical erosion[J]. Rock and Soil Mechanics, 2004, 25(9): 1363-1367. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.004
    [8]
    谢和平, 陈忠辉. 岩石力学[M]. 北京: 科学出版社, 2004.

    XIE He-ping, CHEN Zhong-hui. Rock Mechanics[M]. Beijing: Science Press, 2004. (in Chinese)
    [9]
    李光雷, 蔚立元, 苏海健, 等. 化学腐蚀灰岩SHPB冲击动力学性能研究[J]. 岩石力学与工程学报, 2018, 37(9): 2075-2083. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809007.htm

    LI Guang-lei, YU Li-yuan, SU Hai-jian, et al. Dynamic properties of corroded limestone based on SHPB[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2075-2083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809007.htm
    [10]
    韩铁林, 陈蕴生, 师俊平. 水化学腐蚀对砂岩力学特性影响的试验研究[J]. 岩石力学与工程学报, 2013(增刊2): 3064-3072. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2012.htm

    HAN Tie-lin, CHEN Yun-sheng, SHI Jun-ping, et al. Experimental study of mechanical charecteristics of sandstone subjected to hydrochemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2013(S2): 3064-3072. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2012.htm
    [11]
    周科平, 胡振襄, 高峰, 等. 基于核磁共振技术的大理岩三轴压缩损伤规律研究[J]. 岩土力学, 2014, 35(11): 3117-3122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411013.htm

    ZHOU Ke-ping, HU Zhen-xiang, GAO Feng, et al. Study of marble damage laws under triaxial compression condition based on nuclear magnetic resonance technique[J]. Rock and Roil Mechanics, 2014, 35(11): 3117-3122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201411013.htm
    [12]
    ISRM Testing Commission. Suggested method for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1978, 15(3): 99-103.
    [13]
    杨仁树, 陈骏, 刘殿书. 动态巴西圆盘劈裂试验的极限分析解[J]. 岩土工程学报, 2016, 39(6): 1156-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706029.htm

    YANG Ren-shu, CHEN Jun, LIU Dian-shu. Limit analysis solution of dynamic Brazilian disc splitting test[J]. Journal of Geotechnical Engineering, 2016, 39(6): 1156-1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706029.htm
    [14]
    刘石, 许金余, 白二雷, 等. 高温后大理岩动态劈裂拉伸试验研究[J]. 岩土力学, 2013, 34(12): 3500-3504. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312024.htm

    LIU Shi, XU Jin-yu, BAI Er-lei, et al. Experimental study of dynamic tensile behaviors of marble after high temperature[J]. Rock and Soil Mechanics, 2013, 34(12): 3500-3504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312024.htm
    [15]
    闻名, 许金余, 王鹏, 等. 水分与冻融环境下岩石动态拉伸试验及细观分析[J]. 振动与冲击, 2017, 36(20): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201720002.htm

    WEN Ming, Xu Jin-yu, WANG Peng, et al. Rock dynamic tensile test and meso-analysis under water and freeze-thaw environment[J]. Vibration and Impact, 2017, 36(20): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201720002.htm
    [16]
    李夕兵. 岩石动力学基础与应用[M]. 北京: 科学出版社, 2014: 67-110.

    LI Xi-bing. Foundation and Application of Rock Dynamics[M]. Beijing: Science Press, 2014: 67-110. (in Chinese)
    [17]
    SONG B, CHEN W. Energy for specimen deformation in a splitHopkinson pressure bar experiment[J]. Experimental Mechanics, 2006, 46(3): 407-410.
    [18]
    李鹏, 刘建, 李国和, 等. 水化学作用对砂岩抗剪强度特性影响效应研究[J]. 岩土力学, 2011, 32(2): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102014.htm

    LI Peng, LIU Jian, LI Guo-he, et al. Experimental study for shear strength characteristics of sandstone under water-rock interaction effects[J]. Rock and Roil Mechanics, 2011, 32(2): 380-386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201102014.htm
    [19]
    乔丽苹, 刘建, 冯夏庭. 砂岩水物理化学损伤机制研究[J]. 岩石力学与工程学报, 2007, 26(10): 2117-2124. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710022.htm

    QIAO Li-ping, LIU Jian, FENG Xia-ting. Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2117-2124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200710022.htm
  • Cited by

    Periodical cited type(10)

    1. 申林方,巫益,刘文连,李泽,王志良. 化学溶液长期浸泡作用下灰岩溶蚀劣化研究. 地下空间与工程学报. 2024(01): 82-90 .
    2. 贾蓬,毛松泽,钱一锦,卢佳亮. 不同加载速率下冻融砂岩的动态劈裂特性. 东北大学学报(自然科学版). 2024(01): 111-119 .
    3. 杨康辉,吴志鑫,苏叶茂,刘少锐,郑靖,周仲荣. 仿生侵蚀介质对滚刀/大理岩滚动摩擦磨损行为的影响. 表面技术. 2024(09): 117-126 .
    4. 赵文环,陈剑,周泽卿. 一维动静组合加载下灰岩力学特性及能量耗散分析. 现代矿业. 2024(05): 235-239 .
    5. 张佳男,杨雪,陈北辰. 实验室模拟石质文物老化试验的研究进展. 首都师范大学学报(自然科学版). 2024(06): 62-73 .
    6. 平琦,胡薇,后健民. 弱酸腐蚀下含孔砂岩动态压缩力学特性试验研究. 河南城建学院学报. 2024(06): 1-7+34 .
    7. 谢森林,万文,周宏伟,贾文豪,张雷,魏青,陈伟. 酸腐蚀条件下石膏岩分数阶蠕变本构模型研究. 力学与实践. 2022(02): 266-275 .
    8. 宁建国,李壮,王俊,邢闯闯,沈圳. 动态拉应力波作用下锚固体力学响应试验研究. 采矿与安全工程学报. 2022(04): 731-740 .
    9. 赵宁,董硕,陈熙宇,殷达,刘若涛,荣冠. 弱风化花岗岩的动态力学特性试验研究. 三峡大学学报(自然科学版). 2022(05): 62-70 .
    10. 马涛,丁梧秀,王鸿毅,陈桂香,陈华军,闫永艳. 酸性水化学溶液侵蚀下不同矿物成分含量灰岩溶解特性及力学特性研究. 岩土工程学报. 2021(08): 1550-1557 . 本站查看

    Other cited types(22)

Catalog

    Article views (243) PDF downloads (148) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return