• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MIAO Lin-chang, LI Chao, LEI Li-jian, LIANG Xiao-dong. Vibration attenuation and application of composition materials of periodic structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1139-1144. DOI: 10.11779/CJGE202006019
Citation: MIAO Lin-chang, LI Chao, LEI Li-jian, LIANG Xiao-dong. Vibration attenuation and application of composition materials of periodic structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1139-1144. DOI: 10.11779/CJGE202006019

Vibration attenuation and application of composition materials of periodic structures

More Information
  • Received Date: April 16, 2019
  • Available Online: December 07, 2022
  • In order to isolate vibration, the conventional attenuation method is to decease the stiffness and to increase the damp in the civil engineering structures. But those materials are almost rubber products. However, the rubber products will be easy to degenerate and not be conveniently exchanged because their service life is limited, and the durability of isolation of the rubber products will be obviously affected. The propagation characteristics of elastic wave in composite materials are introduced. Their band gap periodic structures are validated by laboratory tests. The model of metro bed of the composite materials of periodic structures is derived by the theoretical method. The laboratory and calculated results demonstrate that the new type high polymer concrete metro bed material has obviously attenuation features for the real metro vibration signal as inputting signal. This study will provide the theoretical foundation and new technology path for long-term vibration attenuation of engineering structures.
  • [1]
    LEONARD Meirovitch. Dynamics and Control of Structures[M]. New York: John Willey & Sons Inc, 1990.
    [2]
    欧进萍. 结构振动控制–主动、被动和智能控制[M]. 北京: 科学出版社, 2003.

    OU Jin-ping. Control for Structural Vibration-Active, Semi-Active and Intelligent Control[M]. Beijing: Science Press, 2003. (in Chinese)
    [3]
    TINARD V, NGUYEN Q T, FOND C. Experimental study on high damping rubber under combined action of compression and shear[J]. Journal of Engineering Materials and Technology, 2015, 137(1): 11007. doi: 10.1115/1.4028891
    [4]
    PRASERTSRI S, RATTANASOM N. Mechanical and damping properties of silica/natural rubber composites prepared from latex system[J]. Polymer Testing, 2011, 30(5): 515-526. doi: 10.1016/j.polymertesting.2011.04.001
    [5]
    XIANG P, ZHAO X Y, XIAO D L, et al. The structure and dynamic properties of nitrile-butadiene rubber/poly (vinyl chloride)/hindered phenol crosslinked composites[J]. Journal of Applied Polymer Science, 2008, 109(1): 106-114. doi: 10.1002/app.27337
    [6]
    高世兵. 钢弹簧浮置板减振轨道在城市地铁中的应用[J]. 铁道工程学报, 2008, 25(3): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200803018.htm

    GAO Shi-bing. Application of floating slab damping roadbed with steel spring in metro[J]. Journal of Railway Engineering Society, 2008, 25(3): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200803018.htm
    [7]
    邓玉姝, 夏禾, 善田康雄, 等. 城市轨道交通梯形轨枕轨道高架桥梁试验研究[J]. 工程力学, 2011, 28(3): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103009.htm

    DENG Yu-shu, XIA He, ZENDA Ya-suo, et al. Experimental study of ladder track on a rail transit elevated bridge[J]. Engineering Mechanics, 2011, 28(3): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201103009.htm
    [8]
    任静, 姜坚白. 钢弹簧浮置板道床在城市铁路西直门车站的应用[J]. 铁道标准设计, 2002(9): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200209006.htm

    RENG Jing, JIANG Jian-bai. The application of steel spring floating slab track bed to Xizhimen Station of urban rail system[J]. Railway Standard Design, 2002(9): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200209006.htm
    [9]
    张宝才, 徐祯祥. 螺旋钢弹簧浮置板隔振技术在城市轨道交通减振降噪上的应用[J]. 中国铁道科学, 2002, 23(3): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200203014.htm

    ZHANG Bao-cai, XU Zhen-xiang. Applications of the steel spring floating track bed for vibration and noise control in urban rail traffic[J]. China Railway Science, 2002, 23(3): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200203014.htm
    [10]
    SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration,1992, 158(2): 377-382. doi: 10.1016/0022-460X(92)90059-7
    [11]
    KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band-structure of petiodic elastic composites[J]. Phys Rev Lett, 1993, 71(13): 2022-2025. doi: 10.1103/PhysRevLett.71.2022
    [12]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. SCIENCE, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [13]
    GOFFAUX C, Sdnchez-Dehesa J, YEYATI A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters, 2002, 88(22): 1-4.
    [14]
    GOFFAUX C, Sanchez-Dehesa J. Two-dimensional phononic crystals studied using a variational method: application to lattices of locally resonant materials[J]. Physical Review B, 2003, 67(14): 144301.
    [15]
    HIRSEKORN M, DELSANTO P P, LEUNG A C, et al. Elastic wave propagation in locally resonant sonic material: comparison between local interaction simulation approach and modal analysis[J]. Journal of Applied Physics, 2006, 99(12): 124912.
    [16]
    WU T, WU T, HSU J. Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface[J]. Physical Review B, 2009, 79(10): 104306.
    [17]
    XIANG H, SHI Z. Analysis of flexural vibration band gaps in periodic beams using differential quadrature method[J]. Computers & Structures, 2009, 87(23): 1559-1566.
    [18]
    XIANG H J, SHI Z F. Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation[J]. Structural Engineering and Mechanics, 2011, 40(3): 373-392.
    [19]
    石志飞, 程志宝, MOYL . 周期性隔震基础的理论与实验研究进展[J]. 地震工程与工程振动, 2014, 34(增刊1): 763-768. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1120.htm

    SHI Zhi-fei, CHENG Zhi-bao, MO Yi-lung. Theoretical and experimental studies of periodic foundations[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(S1): 763-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1120.htm
    [20]
    QIAN D H, SHI Z Y. Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x-y plane[J]. Physics Letters A, 2017, 381(17): 1516-1524.
    [21]
    WANG P, YI Q, ZHAO C, et al. Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms[J]. Archive of Applied Mechanics, 2017, 87(3): 503-519.
    [22]
    LOU J, HE L W, YANG J, et al. Wave propagation in viscoelastic phononic crystal rods with internal resonators[J]. Applied Acoustics, 2018, 141: 382-392.
    [23]
    HUSSEIN M I, KHAJEHTOURIAN R. Nonlinear bloch waves and balance between hardening and softening dispersion[J]. Proceedings of the Royal Society A- Mathematical Physical and Engineering Sciences, 2018, 474(1): 1-19.
    [24]
    LIU M, ZHU W D. Modeling and analysis of nonlinear wave propagation in one-dimensional phononic structures[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2018, 140(6): 061010.
    [25]
    LI C, MIAO L C, YOU Q, et al. Eects of material parameters on the band gaps of two-dimensional three-component phononic crystals[J]. Applied Physics A, 2019, 125(3): 170.
  • Cited by

    Periodical cited type(6)

    1. 包卫星,吴倩,吴谦,秦川,侯天琪. 冻融循环作用下伊犁盐渍化黄土力学特性. 岩石力学与工程学报. 2024(07): 1775-1787 .
    2. 伊学涛,尚彦军,孟庆森,孟和,崔振东,贺强. 不同吸力下伊犁河谷原状非饱和黄土强度特性试验研究. 工程地质学报. 2024(03): 760-771 .
    3. 梁志超,张爱军,任文渊,胡海军,王毓国,李双村. 不同含水率高易溶盐含量的伊犁黄土流变特性. 农业工程学报. 2023(05): 90-99 .
    4. 周昌,黄顺. 新疆伊犁黄土工程地质特征及致灾机理研究综述. 工程地质学报. 2023(04): 1247-1260 .
    5. 邓洪力,姜海波,侍克斌,赵海姣. 新疆伊犁湿陷性黄土输水渠道湿陷变形特性及影响因素分析. 水资源与水工程学报. 2023(06): 139-146 .
    6. 刘飞禹,赵川,孙宏磊,张诗珣. 含盐量对硫酸钠盐渍土–混凝土界面剪切特性的影响研究. 岩石力学与工程学报. 2022(08): 1680-1688 .

    Other cited types(14)

Catalog

    Article views (296) PDF downloads (130) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return