Citation: | YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019 |
[1] |
ZHANG G X, SUGIURA Y, KOZO S. Failure simulation of foundation by manifold method and comparison with experiment[J]. Journal of Applied Mechanics, 1998(1): 427-436. http://www.onacademic.com/detail/journal_1000040291858710_fed7.html
|
[2] |
陈远强, 杨永涛, 郑宏, 等. 饱和–非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
CHEN Yuan-qiang, YANG Yong-tao, ZHENG Hong, et al. Saturated-unsaturated seepage by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
|
[3] |
MA G, AN X, HE L E I. The numerical manifold method: a review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32. doi: 10.1142/S0219876210002040
|
[4] |
徐栋栋, 郑宏, 杨永涛. 线性无关高阶数值流形法[J]. 岩土工程学报, 2014, 36(3): 482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403015.htm
XU Dong-dong, ZHENG Hong, YANG Yong-tao. Linearly independent higher-order numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 482-488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403015.htm
|
[5] |
李伟, 郑宏. 基于数值流形法的渗流问题边界处理新方法[J]. 岩土工程学报, 2017, 39(10): 1867-1873. doi: 10.11779/CJGE201710015
LI Wei, ZHENG Hong. New boundary treatment for seepage flow problem based on numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1867-1873. (in Chinese) doi: 10.11779/CJGE201710015
|
[6] |
NING Y J, AN X M, MA G W. Footwall slope stability analysis with the numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 964-975. doi: 10.1016/j.ijrmms.2011.06.011
|
[7] |
WU Z, WONG L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method[J]. Computers and Geotechnics, 2012, 39: 38-53. doi: 10.1016/j.compgeo.2011.08.011
|
[8] |
TI K S, HUAT B B, NOORZAEI J, et al. A review of basic soil constitutive models for geotechnical application[J]. Electronic Journal of Geotechnical Engineering, 2009, 14: 1-18.
|
[9] |
HACKSTON A, RUTTER E. The Mohr–Coulomb criterion for intact rock strength and friction – a re-evaluation and consideration of failure under polyaxial stresses[J]. Solid Earth, 2016, 7(2): 493-508. doi: 10.5194/se-7-493-2016
|
[10] |
AN X, NING Y, MA G, et al. Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(7): 679-701. doi: 10.1002/nag.2226
|
[11] |
XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split hopkinson pressure bar testing[J]. Rock Mechanics and Rock Engineering, 2015, 49(3): 731-745.
|
[12] |
AYATOLLAHI M R, ALIHA M R M, HASSANI M M. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens[J]. Materials Science and Engineering: A, 2006, 417(1/2): 348-356.
|
[13] |
XIE Y, CAO P, JIN J, et al. Mixed mode fracture analysis of semi-circular bend (SCB) specimen: A numerical study based on extended finite element method[J]. Computers and Geotechnics, 2017, 82: 157-172. doi: 10.1016/j.compgeo.2016.10.012
|
[14] |
BERGARA A, DORADO J I, MART N-MEIZOSO A, et al. Fatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (Xfem)[J]. International Journal of Fatigue, 2017, 103: 112-121. doi: 10.1016/j.ijfatigue.2017.05.026
|
[15] |
LANG C, MAKHIJA D, DOOSTAN A, et al. A simple and efficient preconditioning scheme for heaviside enriched XFEM[J]. Computational Mechanics, 2014, 54(5): 1357-1374. doi: 10.1007/s00466-014-1063-8
|
[16] |
BOCCA P, CARPINTERI A, VALENTE S. Size effects in the mixed mode crack propagation: softening and snap-back analysis[J]. Engineering Fracture Mechanics, 1990, 35(1): 159-170.
|
[17] |
GEERS M G D, BORST R D, PEERLINGS R H J. Damage and crack modeling in single-edge and double-edge notched concrete beams[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 247-261.
|
[18] |
ZHU W C, TANG C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model[J]. Construction & Building Materials, 2002, 16(8): 453-463.
|
[19] |
OLIVER J, HUESPE A E, SAMANIEGO E, et al. Continuum approach to the numerical simulation of material failure in concrete[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2004, 28: 609-632.
|
[20] |
DIAS I F, OLIVER J, LEMOS J V, et al. Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques[J]. Engineering Fracture Mechanics, 2016, 154: 288-310. doi: 10.1016/j.engfracmech.2015.12.028
|
[21] |
ROTH S-N, L GER P, SOULA MANI A. A combined XFEM-damage mechanics approach for concrete crack propagation[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 923-955.
|
[22] |
CAMONES L A M, VARGAS E D A, DE FIGUEIREDO R P, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153: 80-94.
|
[23] |
LI T, PENG Y, ZHU Z, et al. Discrete element method simulations of the inter-particle contact parameters for the mono-sized iron ore particles[J]. Materials, 2017, 10(5): 520.
|
[24] |
WONG L N Y, WU Z. Application of the numerical manifold method to model progressive failure in rock slopes[J]. Engineering Fracture Mechanics, 2014, 119: 1-20.
|
[1] | SONG Yang, MA Xuqi, ZHAO Changqing, XIE Zhihui, WANG Fucheng, NIU Kai. Shear creep characteristics and stability of rock slopes with concealed noninterpenetrated weak interlayer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 755-763. DOI: 10.11779/CJGE20221556 |
[2] | Shear strength and cementation characteristics of interface between microbial mortar and rock[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240253 |
[3] | WANG Zhonghao, ZHOU Huilin. Shear strength characteristics of soils on bank slope of bridge foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 193-196. DOI: 10.11779/CJGE2023S10030 |
[4] | LIN Hang, XIONG wei, LI Zheng-ming. Embedded program for slip surface by shear strain of slopes and parametric analysis[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 52-56. |
[5] | CHEN Xing-zhou, LI Jian-lin, CHAI Jun-rui, BAI Jun-guang. Shear creep characteristics and constitutive model for interlayer shear belt of high abutment slopes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1675-1682. |
[6] | YIN Zong-ze, YUAN Jun-ping, WEI Jie, CAO Xue-shan, LIU Hua-qiang, XU Bin. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161. |
[7] | ZHAO Heng, SONG Er-xiang. Stability analysis of circular convex slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 730. |
[8] | Simulation of critical slip field method of slopes based on optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6). |
[9] | LIU Qiang, YANG Junjie, LIU Hongjun, TOYOSAWA Y, ITOH K. Stability of cutting work of natural slopes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 566-573. |
[10] | Li Jing, Zhou Xinhua, Dang Jinqian. Graphic method for the stability of loess slopes[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 43-46. |