• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019
Citation: YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019

Application of numerical manifold method in crack propagation

More Information
  • Received Date: July 14, 2019
  • Available Online: December 07, 2022
  • In order to solve the problem that the traditional fracture criterion is difficult to simulate the mixed multi-crack propagation, based on the existing numerical manifold method program, the existing crack propagation criterion is improved so that the numerical manifold method can be adapted to the simulation of various types of crack propagation. Based on the Mohr-Coulomb criterion and the maximum circumferential stress criterion, the crack propagation direction is determined by combining the two criteria. The corresponding program developed by C language is used to calculate the half disk tensile tests and four-point bilateral shear tests. The crack propagation paths of the numerical simulation and test results are consistent, and the crack can pass through the interior of manifold element. Subsequently, the cracking problem of gravity dams is simulated, and it is found that the cracking of gravity dams is mainly tensile failure, and the crack propagation path is similar to the finite element results. Finally, by simulating the slope slip problem, the calculated results are highly consistent with those by DEM and other methods. The results of this study verify the effectiveness of the proposed strength criterion in simulating various types of crack propagation problems and lay a foundation for NMM to simulate practical engineering problems.
  • [1]
    ZHANG G X, SUGIURA Y, KOZO S. Failure simulation of foundation by manifold method and comparison with experiment[J]. Journal of Applied Mechanics, 1998(1): 427-436. http://www.onacademic.com/detail/journal_1000040291858710_fed7.html
    [2]
    陈远强, 杨永涛, 郑宏, 等. 饱和–非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm

    CHEN Yuan-qiang, YANG Yong-tao, ZHENG Hong, et al. Saturated-unsaturated seepage by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
    [3]
    MA G, AN X, HE L E I. The numerical manifold method: a review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32. doi: 10.1142/S0219876210002040
    [4]
    徐栋栋, 郑宏, 杨永涛. 线性无关高阶数值流形法[J]. 岩土工程学报, 2014, 36(3): 482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403015.htm

    XU Dong-dong, ZHENG Hong, YANG Yong-tao. Linearly independent higher-order numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 482-488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403015.htm
    [5]
    李伟, 郑宏. 基于数值流形法的渗流问题边界处理新方法[J]. 岩土工程学报, 2017, 39(10): 1867-1873. doi: 10.11779/CJGE201710015

    LI Wei, ZHENG Hong. New boundary treatment for seepage flow problem based on numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1867-1873. (in Chinese) doi: 10.11779/CJGE201710015
    [6]
    NING Y J, AN X M, MA G W. Footwall slope stability analysis with the numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 964-975. doi: 10.1016/j.ijrmms.2011.06.011
    [7]
    WU Z, WONG L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method[J]. Computers and Geotechnics, 2012, 39: 38-53. doi: 10.1016/j.compgeo.2011.08.011
    [8]
    TI K S, HUAT B B, NOORZAEI J, et al. A review of basic soil constitutive models for geotechnical application[J]. Electronic Journal of Geotechnical Engineering, 2009, 14: 1-18.
    [9]
    HACKSTON A, RUTTER E. The Mohr–Coulomb criterion for intact rock strength and friction – a re-evaluation and consideration of failure under polyaxial stresses[J]. Solid Earth, 2016, 7(2): 493-508. doi: 10.5194/se-7-493-2016
    [10]
    AN X, NING Y, MA G, et al. Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(7): 679-701. doi: 10.1002/nag.2226
    [11]
    XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split hopkinson pressure bar testing[J]. Rock Mechanics and Rock Engineering, 2015, 49(3): 731-745.
    [12]
    AYATOLLAHI M R, ALIHA M R M, HASSANI M M. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens[J]. Materials Science and Engineering: A, 2006, 417(1/2): 348-356.
    [13]
    XIE Y, CAO P, JIN J, et al. Mixed mode fracture analysis of semi-circular bend (SCB) specimen: A numerical study based on extended finite element method[J]. Computers and Geotechnics, 2017, 82: 157-172. doi: 10.1016/j.compgeo.2016.10.012
    [14]
    BERGARA A, DORADO J I, MART N-MEIZOSO A, et al. Fatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (Xfem)[J]. International Journal of Fatigue, 2017, 103: 112-121. doi: 10.1016/j.ijfatigue.2017.05.026
    [15]
    LANG C, MAKHIJA D, DOOSTAN A, et al. A simple and efficient preconditioning scheme for heaviside enriched XFEM[J]. Computational Mechanics, 2014, 54(5): 1357-1374. doi: 10.1007/s00466-014-1063-8
    [16]
    BOCCA P, CARPINTERI A, VALENTE S. Size effects in the mixed mode crack propagation: softening and snap-back analysis[J]. Engineering Fracture Mechanics, 1990, 35(1): 159-170.
    [17]
    GEERS M G D, BORST R D, PEERLINGS R H J. Damage and crack modeling in single-edge and double-edge notched concrete beams[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 247-261.
    [18]
    ZHU W C, TANG C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model[J]. Construction & Building Materials, 2002, 16(8): 453-463.
    [19]
    OLIVER J, HUESPE A E, SAMANIEGO E, et al. Continuum approach to the numerical simulation of material failure in concrete[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2004, 28: 609-632.
    [20]
    DIAS I F, OLIVER J, LEMOS J V, et al. Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques[J]. Engineering Fracture Mechanics, 2016, 154: 288-310. doi: 10.1016/j.engfracmech.2015.12.028
    [21]
    ROTH S-N, L GER P, SOULA MANI A. A combined XFEM-damage mechanics approach for concrete crack propagation[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 923-955.
    [22]
    CAMONES L A M, VARGAS E D A, DE FIGUEIREDO R P, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153: 80-94.
    [23]
    LI T, PENG Y, ZHU Z, et al. Discrete element method simulations of the inter-particle contact parameters for the mono-sized iron ore particles[J]. Materials, 2017, 10(5): 520.
    [24]
    WONG L N Y, WU Z. Application of the numerical manifold method to model progressive failure in rock slopes[J]. Engineering Fracture Mechanics, 2014, 119: 1-20.
  • Related Articles

    [1]SONG Yang, MA Xuqi, ZHAO Changqing, XIE Zhihui, WANG Fucheng, NIU Kai. Shear creep characteristics and stability of rock slopes with concealed noninterpenetrated weak interlayer[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 755-763. DOI: 10.11779/CJGE20221556
    [2]Shear strength and cementation characteristics of interface between microbial mortar and rock[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240253
    [3]WANG Zhonghao, ZHOU Huilin. Shear strength characteristics of soils on bank slope of bridge foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 193-196. DOI: 10.11779/CJGE2023S10030
    [4]LIN Hang, XIONG wei, LI Zheng-ming. Embedded program for slip surface by shear strain of slopes and parametric analysis[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 52-56.
    [5]CHEN Xing-zhou, LI Jian-lin, CHAI Jun-rui, BAI Jun-guang. Shear creep characteristics and constitutive model for interlayer shear belt of high abutment slopes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1675-1682.
    [6]YIN Zong-ze, YUAN Jun-ping, WEI Jie, CAO Xue-shan, LIU Hua-qiang, XU Bin. Influences of fissures on slope stability of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2155-2161.
    [7]ZHAO Heng, SONG Er-xiang. Stability analysis of circular convex slopes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 730.
    [8]Simulation of critical slip field method of slopes based on optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6).
    [9]LIU Qiang, YANG Junjie, LIU Hongjun, TOYOSAWA Y, ITOH K. Stability of cutting work of natural slopes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 566-573.
    [10]Li Jing, Zhou Xinhua, Dang Jinqian. Graphic method for the stability of loess slopes[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 43-46.
  • Cited by

    Periodical cited type(5)

    1. 冯世进,史嘉梁,郑奇腾. 填埋场复合衬垫界面动力剪切特性研究. 结构工程师. 2024(03): 125-134 .
    2. 臧年永,肖成志,杨仕钊. 膨润土防水毯搭接界面力学性能的影响因素. 深圳大学学报(理工版). 2024(05): 626-634 .
    3. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    4. 林海,曾一帆,周创兵,董平霄,施建勇. 褶皱土工膜+针刺钠基膨润土防水毯复合衬里的剪切试验研究. 岩土力学. 2023(02): 355-361+372 .
    5. 章玲玲,林海. 土工膜GCL复合衬里剪切强度确定方法. 人民长江. 2023(12): 174-178+201 .

    Other cited types(3)

Catalog

    Article views (301) PDF downloads (91) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return