• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Lin-yu, MIAO Lin-chang, SUN Xiao-hao, CHEN Run-fa, WANG Cheng-cheng. Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 714-720. DOI: 10.11779/CJGE202004014
Citation: WU Lin-yu, MIAO Lin-chang, SUN Xiao-hao, CHEN Run-fa, WANG Cheng-cheng. Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 714-720. DOI: 10.11779/CJGE202004014

Experimental study on sand solidification using plant-derived urease-induced calcium carbonate precipitation

More Information
  • Received Date: May 20, 2019
  • Available Online: December 07, 2022
  • The plant-derived urease-induced calcium carbonate precipitation cemented sand is a new technology in the field of geotechnical engineering, which has many advantages over the currently widely-used technology of solidifying sand by microorganism. Urease is extracted from soybeans directly. At first, the effects of temperature and pH on soybean urease activity are studied. Then the tests on the urease-induced calcium carbonate precipitation are carried out by controlling gel solution concentration, pH, temperature and reaction time. Based on this, three kinds of sand with different particle sizes are solidified by injecting urease solution and gel solution circularly. The solidification effect is evaluated by ultrasonic tests, unconfined compressive strength tests and calcium carbonate production tests. The results show that the optimal pH of soybean urease is 8, and urease activity increases with the increase of temperature in the range of 15℃~75℃. The precipitation product induced by soybean urease is calcite. With the increase of gel solution concentration, the production rate of calcium carbonate increases first and then decreases, and when the gel solution concentration is 0.75 mol/L, the production rate of calcium carbonate is the highest. When the gel concentration is constant, the production rate of calcium carbonate is the highest at the pH of 8, and the production rate increases with the increase of reaction time. The temperature within 10℃~40℃ has little effect on the production rate of calcium carbonate. The compressive strength of solidified samples is positively correlated with the content of calcium carbonate. With the increase of the particle sizes of sand, the compressive strength of samples increases first and then decreases, and the sand with particle size of 0.25~0.5 mm has the best solidification effect.
  • [1]
    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
    [2]
    VAN Wijngaarden W K, VERMOLEN F J, VAN Meurs G A M, et al. Modelling biogrout: a new ground improvement method based on microbial-induced carbonate precipitation[J]. Transport in Porous Media, 2011, 87(2): 397-420. doi: 10.1007/s11242-010-9691-8
    [3]
    孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11): 3225-3230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711019.htm

    SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al. Experimental study of solidifying sand using microbial- induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2017, 38(11): 3225-3230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711019.htm
    [4]
    DHAMI N K, REDDY M S, MUKHERJEE A. Biomineralization of calcium carbonates and their engineered applications: a review[J]. Frontiers in Microbiology, 2013, 4: 1-13.
    [5]
    CHU J, IVANOV V, HE J, et al. Development of microbial geotechnology in Singapore[C]//Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011, Dallas: 4070-4078.
    [6]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    [7]
    HAMED Khodadadi T, KAVAZANJIAN E, VAN Paassen L, et al. Bio-grout materials: a review[C]//Grouting, 2017, Honolulu: 1-12.
    [8]
    DILRUKSHI R A N, WATANABE J, KAWASAKI S. Sand cementation test using plant-derived urease and calcium phosphate compound[J]. Materials Transactions, 2015, 56(9): 1565-1572. doi: 10.2320/matertrans.M-M2015818
    [9]
    HAMDAN N, KAVAZANJIAN E Jr, O'DONNELL S. Carbonate cementation via plant derived urease[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2013, Paris: 2-6.
    [10]
    KAVAZANJIAN E, HAMDAN N. Enzyme induced carbonate precipitation (EICP) columns for ground improvement[C]//IFCEE 2015, 2015, San Antonio: 2252-2261.
    [11]
    ALMAJED A A. Enzyme Induced Carbonate Precipitation (EICP) for Soil Improvement[D]. Phoenix: Arizona State University, 2017.
    [12]
    NEUPANE D, YASUHARA H, KINOSHITA N, et al. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2201-2211. doi: 10.1061/(ASCE)GT.1943-5606.0000959
    [13]
    CARMONA J P S F, VENDA Oliveira P J, LEMOS L J L, et al. Improvement of a sandy soil by enzymatic calcium carbonate precipitation[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2017, 171(1): 3-15.
    [14]
    LARSEN J, POULSEN M, LUNDGAARD T, et al. Plugging of fractures in chalk reservoirs by enzyme-induced calcium carbonate precipitation[J]. SPE Production & Operations, 2008, 23(4): 478-483.
    [15]
    NAM I H, CHON C M, JUNG K Y, et al. Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials[J]. KSCE Journal of Civil Engineering, 2015, 19(6): 1620-1625. doi: 10.1007/s12205-014-0558-3
    [16]
    JAVADI N, KHODADADI H, HAMDAN N, et al. EICP treatment of soil by using urease enzyme extracted from watermelon seeds[J]. Geotechnical Special Publication, 2018, 2018(GSP 296): 115-124.
    [17]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Murdoch University, 2004.
    [18]
    SUN X H, MIAO L C, TONG T Z, et al. Study of the effect of temperature on microbially induced carbonate precipitation[J]. Acta Geotechnica, 2019, 14(3): 627-638. doi: 10.1007/s11440-018-0758-y
    [19]
    SUMNER J B. The isolation and crystallization of the enzyme urease preliminary paper[J]. Journal of Biological Chemistry, 1926, 69(2): 435-441.
    [20]
    HAMDAN N, KAVAZANJIAN E Jr. Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66(7): 546-555.
    [21]
    DILRUKSHI R A N, KAWASAKI S. Plant-derived urease induced sand cementation used in geotechnical engineering applications[C]//International Conference on Geomechanics, 2016, Melbourne: 28-29.
  • Cited by

    Periodical cited type(52)

    1. 杜常博,陶晗,易富,黄惠杰,程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究. 材料导报. 2025(02): 71-78 .
    2. 张建伟,吕子壮,李想,郑俊杰,盛桂琳,李青飞. 干湿循环作用下聚丙烯纤维对酶诱导碳酸盐沉淀固化砂土的耐久性研究. 复合材料学报. 2025(02): 1000-1009 .
    3. 胡雯璐,刘鹏. 脲酶喷洒工艺对赤泥矿化胶结及抑尘效果试验. 林业工程学报. 2025(02): 173-179 .
    4. 李明东,张诗艾,杨远江,徐浩峰,陶雪晴,何稼. 植物脲酶诱导碳酸盐沉淀改良土体研究进展. 华侨大学学报(自然科学版). 2024(01): 1-9 .
    5. 张永杰,欧阳健,黄万东,刘涛,朱剑锋,陈剑华. 胶结液浓度对微生物固化花岗岩残积土强度特性的影响规律. 湖南大学学报(自然科学版). 2024(03): 121-129 .
    6. 田威,云伟,党可欣,李腾. 不同钙源EICP溶液改良路基黄土动力特性研究. 材料导报. 2024(09): 57-65 .
    7. 陈洪运,张尧,温琪. 微生物矿化加固砂土的试验研究. 河北建筑工程学院学报. 2024(01): 8-13 .
    8. 杨昕,洪义,王立忠,国振,郑嘉男,颜梦秋. 酸敏性弱胶结人工砂岩制备方法及酸蚀渗流试验初探. 岩石力学与工程学报. 2024(06): 1480-1491 .
    9. 何稼,屈思源,杭磊,黄安国. 生物酶辅助氧化镁碳化过程砂土加固试验研究. 土木与环境工程学报(中英文). 2024(05): 101-108 .
    10. 王寅,林枫,陈萍,陈佳庆,林建涛,张淳,阮少钦,孟涛. EICP稳定化生活垃圾焚烧飞灰试验研究. 环境科学学报. 2024(08): 416-425 .
    11. 黄鋆溢,吴大志,顾运韬,王喆. 建筑垃圾再生砂酶促碳酸钙加固试验研究. 水利规划与设计. 2024(09): 119-123+128 .
    12. 董旭光,方礼鑫,马渊博,胡倩倩,李瑞瑞. 大豆脲酶诱导碳酸钙固化黄土的强度试验研究. 地震工程学报. 2024(05): 1009-1020 .
    13. 赖汉江,刘润明,陈志波,崔明娟. 粒径效应对大豆粗脲酶固化砂土效果的影响. 岩土力学. 2024(S1): 25-32 .
    14. 肖海,徐萌苒,夏振尧,朱志恩,向瑞,高峰,张伦. 基于EICP原理强化掺磷石膏土壤的加固性能. 应用基础与工程科学学报. 2024(05): 1307-1318 .
    15. 马强,李蒙,周鑫隆,习磊,孙君. EICP固化轮胎颗粒混合黏土的强度特性及微观机理. 岩土工程学报. 2024(S2): 72-76 . 本站查看
    16. 何文杰,郑文杰,谢毅鑫,薛中飞,秦鹏,吕鑫江. 基于纳米羟基磷灰石的矿化技术修复铅污染水和一维土柱的试验研究. 土木工程学报. 2024(11): 45-56 .
    17. 缪林昌,王恒星,孙潇昊,吴林玉,郭薪,范广才. 生物矿化固沙长效性分析. 岩土力学. 2024(11): 3212-3220 .
    18. 刘德玉,张伦,夏振尧,张文琪,向瑞,高峰,肖海. 脲酶诱导碳酸钙沉积(EICP)减小三峡库区紫色土分离能力效果. 农业工程学报. 2024(20): 112-119 .
    19. 石磊,房佳明,张建伟,张欢,边汉亮,徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究. 材料导报. 2024(23): 55-61 .
    20. 王知乐,田雨,周伟,王轶,李蕊,郭仪晗,田涯,陆澳. 壳聚糖联合EICP对露天矿排土场边坡抗侵蚀性影响机制. 煤炭学报. 2024(12): 4713-4727 .
    21. 梅立奎,汪时机,覃永富,向超,李贤,黎桉君,张起勇. EICP固化砂质黏性紫色土的力学性能. 农业工程学报. 2024(23): 179-189 .
    22. 向瑞,郭俊奎,张伦,夏振尧,刘德玉,丁瑜,肖海. 酶诱导碳酸钙沉淀处理对紫色土坡面片蚀过程及泥沙分选的影响. 农业工程学报. 2024(24): 81-88 .
    23. 蒋超,周云东,张燚,高玉峰. SICP方法加固饱和砂土提高抗液化能力的动三轴试验研究. 土木与环境工程学报(中英文). 2023(01): 105-111 .
    24. 吕苏颖,崔猛,熊辉辉,郑俊杰,符晓,韩尚宇. 基于黄豆脲酶的EICP变量试验研究. 南昌工程学院学报. 2023(01): 33-38 .
    25. 褚文杰,李驰,武慧敏,高瑜. 土豆脲酶提取及基于酶诱导碳酸钙沉淀技术对风积沙改良的方法. 土木与环境工程学报(中英文). 2023(02): 74-80 .
    26. 张鹏,孙忠平,陶志刚,成亮,吕启航,王亚文,郑俊杰,霍守东,李慧茹. 碳纤维基EICP矿化砂土渗—力学特性试验研究. 金属矿山. 2023(05): 325-332 .
    27. 王钰轲,曹天才,宋迎宾,邵景干,余翔,董博文. 基于菌促方法和酶促方法的黄河泥沙加固参数试验研究. 浙江大学学报(工学版). 2023(06): 1100-1110 .
    28. 张永杰,刘涛,黄万东,曹俊,黄金鑫,欧阳健. 胶结剂对花岗岩残积土微生物固化特性的影响规律. 中国公路学报. 2023(08): 181-189 .
    29. 袁嘉茂,高永,李婉娇,任怀新,吴振亮. 生物诱导碳酸钙土体固化技术在防沙领域研究进展. 广东水利水电. 2023(09): 75-80 .
    30. 王修铭,陈群,范丹丹,张利民,周成,万里. 微生物诱导矿化处理矿渣次数与灌浆方式研究. 金属矿山. 2023(10): 240-246 .
    31. 王灏喆,武钢义,代育恒,黄灿,常少华. 基于响应面法的EICP-PVA固化粉砂土优化试验研究. 公路. 2023(11): 264-272 .
    32. 赵轩,刘光宇,胡天林,赵璧,吕刚锋. EICP固化砂土强度特性试验研究. 水利与建筑工程学报. 2023(06): 114-121 .
    33. 张茜,叶为民,刘樟荣,王琼,陈永贵. 基于生物诱导碳酸钙沉淀的土体固化研究进展. 岩土力学. 2022(02): 345-357 .
    34. 王恒星,缪林昌,孙潇昊,吴林玉,范广才. 不同温度环境下EICP固砂及优化试验研究. 东南大学学报(自然科学版). 2022(04): 712-719 .
    35. 田威,李腾,贾能,贺礼,张雪珂,张旭东. 木钙源EICP溶液固化路基黄土性能研究. 材料导报. 2022(15): 78-85 .
    36. 曹光辉,刘士雨,蔡燕燕,俞缙,孙志龙. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究. 岩土力学. 2022(08): 2241-2252 .
    37. 张建伟,李贝贝,边汉亮,韩一,王小锯. 钙源对酶诱导碳酸钙沉淀影响的试验研究. 应用基础与工程科学学报. 2022(05): 1245-1255 .
    38. 范广才,缪林昌,孙潇昊,王恒星,吴林玉. 脲酶抑制剂对EICP防风固沙效果的影响研究. 防灾减灾工程学报. 2022(05): 1019-1027 .
    39. 崔猛,符晓,郑俊杰,吕苏颖,熊辉辉,曾晨,韩尚宇. 黄豆脲酶诱导碳酸钙沉淀多变量试验研究. 岩土力学. 2022(11): 3027-3035 .
    40. 原华,郑伟,原耀楠,冯佳星. EICP技术固化黄泛区粉土抗压强度实验研究. 河南大学学报(自然科学版). 2022(06): 727-733 .
    41. 熊辉辉,崔猛,吕苏颖,郑俊杰,符晓. 不同植物源脲酶的活性与钙化变量试验研究. 南昌工程学院学报. 2022(06): 12-17+58 .
    42. 王磊,王博,刘志强,常新昊. 基于脲酶诱导碳酸钙沉淀的土体固化研究进展. 工业建筑. 2022(11): 57-66 .
    43. 边汉亮,张旭钢,韩一,李贝贝,张建伟. 大豆脲酶对Zn~(2+)污染土的修复试验研究. 工业建筑. 2022(11): 67-70+66 .
    44. 边汉亮,段超龙,曲肇伟,石磊,张建伟. 基于酶诱导碳酸盐沉淀的铅污染土修复. 实验室研究与探索. 2022(12): 52-56 .
    45. 原华,刘康,原耀楠,冯佳星. 大豆脲酶诱导碳酸钙沉淀的多因素影响分析. 人工晶体学报. 2021(02): 375-380 .
    46. 王亚文,杨涛,高伟,王鹏华,刘元强. 化学诱导CaCO_3矿化沉淀胶结室内试验研究. 低温建筑技术. 2021(08): 21-25 .
    47. 张建伟,黄小山,边汉亮,岳建伟. 基于脱脂奶粉联合诱导碳酸钙沉淀技术的古建筑修复加固. 中国科技论文. 2021(10): 1035-1039+1054 .
    48. 郎钞棚,马明,邱立冬,杨远江,李明东. 大豆脲酶促沉碳酸钙改良砂土地基承载特性模型试验研究:基于静力触探试验. 高校地质学报. 2021(06): 784-788 .
    49. 赖汉江,崔明娟. 基于脲酶诱导碳酸钙沉积固化土体的研究进展. 高校地质学报. 2021(06): 769-774 .
    50. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 .
    51. 任冠洲,原华,刘康,郑伟,朱佳华. 大豆脲酶诱导碳酸钙沉积技术反应液配方试验. 中国科技论文. 2020(09): 1085-1089+1098 .
    52. 代光志,徐潇航,丁聪. 微生物诱导沉积碳酸钙机理及其在混凝土裂缝修复中的应用. 混凝土与水泥制品. 2020(10): 1-7 .

    Other cited types(36)

Catalog

    Article views (454) PDF downloads (318) Cited by(88)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return