• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Li-wang, LI Hai-bo, LI Xiao-feng, ZHANG Guo-kai, WU Ren-jie. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 542-550. DOI: 10.11779/CJGE202003016
Citation: LIU Li-wang, LI Hai-bo, LI Xiao-feng, ZHANG Guo-kai, WU Ren-jie. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 542-550. DOI: 10.11779/CJGE202003016

Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression

More Information
  • Received Date: April 03, 2019
  • Available Online: December 07, 2022
  • In order to investigate the influences of structural heterogeneity on the mechanical properties and crack growth of rocks, the microstructure of granite is modelled by using grain-based model (GBM). In comparison with the results of laboratory experiments, the properties of stress-strain curves, acoustic emission and grain-scale crack growth of rocks with different mineralogies are investigated. The results show that GBM can be used to efficiently study the macro- and micro-mechanical properties of rocks when the mineral components have different structures and strengths. The grain-scale cracks in rocks are mainly intergranular cracks at the onset of loading, then the intragranular cracks become predominant inversely, and the failure pattern of cracks is always dominated by tensile cracks. When the model fails, the ratios of intergranular and intragranular cracks to total cracks are about 93.87% and 60.95%, respectively. During the whole loading, the locations of microcracks are first located randomly, then the clustering of microcracks leads to the appearance of macroscopic failure surface, and the formation of failure surface is related to the propagation and coalescence of intragranular cracks. When the feldspar mineral in rocks increases, the corresponding peak stress and damage stress increase due to the increase of intragranular cracks formed in feldspar mineral and the decrease of intragranular cracks formed in biotite mineral. In this study, the modelling of micro-structure based on GBM and the reason why heterogeneous rocks behave different mechanical properties may promote our understanding of the influences of rock heterogeneity on the mechanical properties.
  • [1]
    BASS J D. Elasticity of minerals, glasses, and melts[J]. Mineral Physics & Crystallography: a Handbook of Physical Constants, 1995, 2: 45-63.
    [2]
    COWIE S, WALTON G. The effect of mineralogical parameters on the mechanical properties of granitic rocks[J]. Engineering Geology, 2018, 240: 204-225. doi: 10.1016/j.enggeo.2018.04.021
    [3]
    YILMAZ N G, GOKTAN R M, KIBICI Y. Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 3(48): 506-513.
    [4]
    LI X F, LI X, LI H B, et al. Dynamic tensile behaviours of heterogeneous rocks: the grain scale fracturing characteristics on strength and fragmentation[J]. International Journal of Impact Engineering, 2018, 118: 98-118. doi: 10.1016/j.ijimpeng.2018.04.006
    [5]
    SAJID M, COGGAN J, ARIF M, et al. Petrographic features as an effective indicator for the variation in strength of granites[J]. Engineering Geology, 2016, 202: 44-54. doi: 10.1016/j.enggeo.2016.01.001
    [6]
    TANDON R S, GUPTA V. The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya[J]. Engineering Geology, 2013, 153: 125-143. doi: 10.1016/j.enggeo.2012.11.005
    [7]
    PŘIKRYL R. Some microstructural aspects of strength variation in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 671-682. doi: 10.1016/S1365-1609(01)00031-4
    [8]
    TUĞRUL A, ZARIF I H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey[J]. Engineering Geology, 1999, 51(4): 303-317. doi: 10.1016/S0013-7952(98)00071-4
    [9]
    ÜNdül Ö. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks[J]. Engineering Geology, 2016, 210: 10-22. doi: 10.1016/j.enggeo.2016.06.001
    [10]
    ÜNDÜL Ö, AMANN F, AYSAL N, et al. Micro-textural effects on crack initiation and crack propagation of andesitic rocks[J]. Engineering Geology, 2015, 193: 267-275. doi: 10.1016/j.enggeo.2015.04.024
    [11]
    EBERHARDT E, STIMPSON B, STEAD D. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures[J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 81-99. doi: 10.1007/s006030050026
    [12]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [13]
    LI X F, LI H B, LIU Y Q, et al. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs[J]. Tunnelling and Underground Space Technology, 2016, 53: 96-108. doi: 10.1016/j.tust.2015.12.010
    [14]
    CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010. doi: 10.1016/j.ijrmms.2007.02.002
    [15]
    刘广, 荣冠, 彭俊, 等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报, 2013, 35(3): 540-550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303020.htm

    LIU Guang, RONG Guan, PENG Jun, et al. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 540-550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303020.htm
    [16]
    LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785-3817. doi: 10.1007/s00603-018-1566-2
    [17]
    LAN H, MARTIN C D, HU B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B01202): 1-14.
    [18]
    LI X F, LI H B, ZHAO J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock[J]. Computers and Geotechnics, 2017, 90: 96-112. doi: 10.1016/j.compgeo.2017.05.023
    [19]
    周喻, 高永涛, 吴顺川, 等. 效晶质模型及岩石力学特征细观研究[J]. 岩石力学与工程学报, 2015, 34(3): 511-519.

    ZHOU Yu, GAO Yong-tao, WU Shun-chuan, et al. An equivalent crystal model for mesoscopic behaviour of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511-519. (in Chinese)
    [20]
    BEWICK R P, KAISER P K, BAWDEN W F, et al. DEM simulation of direct shear: 1 Rupture under constant normal stress boundary conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1647-1671. doi: 10.1007/s00603-013-0490-8
    [21]
    HOFMANN H, BABADAGLI T, ZIMMERMANN G. A grain based modeling study of fracture branching during compression tests in granites[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 152-162. doi: 10.1016/j.ijrmms.2015.04.008
    [22]
    PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135-154. doi: 10.1007/s00603-017-1316-x
    [23]
    POTYONDY D O. A grain-based model for rock: approaching the true microstructure[C]//Proceedings of the Rock Mechanics in the Nordic Countries, 2010, Kongsberg: 225-234.
    [24]
    ZHANG Y, WONG L N Y, CHAN K K. An Extended Grain‐Based Model Accounting for Microstructures in Rock Deformation[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 125-148. doi: 10.1029/2018JB016165
    [25]
    PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073. doi: 10.1002/2016JB013469
    [26]
    LI X F, LI H B, ZHAO J. The role of transgranular capability in grain-based modelling of crystalline rocks[J]. Computers and Geotechnics, 2019, 110: 161-183. doi: 10.1016/j.compgeo.2019.02.018
    [27]
    MEHRANPOUR M H, KULATILAKE P H S W. Improvements for the smooth joint contact model of the particle flow code and its applications[J]. Computers and Geotechnics, 2017, 87: 163-177. doi: 10.1016/j.compgeo.2017.02.012
    [28]
    DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003
    [29]
    张国凯, 李海波, 王明洋, 等. 岩石单轴压缩下损伤表征及演化规律对比研究[J]. 岩土工程学报, 2019, 41(6): 1074-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906013.htm

    ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, et al. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1074-1082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906013.htm
    [30]
    朱俊, 邓建辉, 黄弈茗, 等. 饱和大理岩特征强度试验研究[J]. 岩石力学与工程学报, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm

    ZHU Jun, DENG Jian-hui, HUANG Yi-min, et al. Experimental study on the characteristic strength of saturated marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
    [31]
    HAZZARD J F, YOUNG R P, MAXWELL S C. Micromechanical modeling of cracking and failure in brittle rocks[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B7): 16683-16697. doi: 10.1029/2000JB900085
    [32]
    穆康, 李天斌, 俞缙, 等. 围压效应下砂岩声发射与压缩变形关系的细观模拟[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2786-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1028.htm

    MU Kang, LI Tian-bin, YU Jin, et al. Mesoscopic simulation of relationship of acoustic emission and compressive deformation behavior in sandstone under confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2786-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1028.htm
    [33]
    KRANZ R L. Crack-crack and crack-pore interactions in stressed granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, Pergamon: 37-47.
    [34]
    MOORE D E, LOCKNER D A. The role of microcracking in shear-fracture propagation in granite[J]. Journal of Structural Geology, 1995, 17(1): 95-114. doi: 10.1016/0191-8141(94)E0018-T

Catalog

    Article views (455) PDF downloads (230) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return