Citation: | LIU Li-wang, LI Hai-bo, LI Xiao-feng, ZHANG Guo-kai, WU Ren-jie. Research on mechanical properties of heterogeneous rocks using grain-based model under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 542-550. DOI: 10.11779/CJGE202003016 |
[1] |
BASS J D. Elasticity of minerals, glasses, and melts[J]. Mineral Physics & Crystallography: a Handbook of Physical Constants, 1995, 2: 45-63.
|
[2] |
COWIE S, WALTON G. The effect of mineralogical parameters on the mechanical properties of granitic rocks[J]. Engineering Geology, 2018, 240: 204-225. doi: 10.1016/j.enggeo.2018.04.021
|
[3] |
YILMAZ N G, GOKTAN R M, KIBICI Y. Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 3(48): 506-513.
|
[4] |
LI X F, LI X, LI H B, et al. Dynamic tensile behaviours of heterogeneous rocks: the grain scale fracturing characteristics on strength and fragmentation[J]. International Journal of Impact Engineering, 2018, 118: 98-118. doi: 10.1016/j.ijimpeng.2018.04.006
|
[5] |
SAJID M, COGGAN J, ARIF M, et al. Petrographic features as an effective indicator for the variation in strength of granites[J]. Engineering Geology, 2016, 202: 44-54. doi: 10.1016/j.enggeo.2016.01.001
|
[6] |
TANDON R S, GUPTA V. The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya[J]. Engineering Geology, 2013, 153: 125-143. doi: 10.1016/j.enggeo.2012.11.005
|
[7] |
PŘIKRYL R. Some microstructural aspects of strength variation in rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(5): 671-682. doi: 10.1016/S1365-1609(01)00031-4
|
[8] |
TUĞRUL A, ZARIF I H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey[J]. Engineering Geology, 1999, 51(4): 303-317. doi: 10.1016/S0013-7952(98)00071-4
|
[9] |
ÜNdül Ö. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks[J]. Engineering Geology, 2016, 210: 10-22. doi: 10.1016/j.enggeo.2016.06.001
|
[10] |
ÜNDÜL Ö, AMANN F, AYSAL N, et al. Micro-textural effects on crack initiation and crack propagation of andesitic rocks[J]. Engineering Geology, 2015, 193: 267-275. doi: 10.1016/j.enggeo.2015.04.024
|
[11] |
EBERHARDT E, STIMPSON B, STEAD D. Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures[J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 81-99. doi: 10.1007/s006030050026
|
[12] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[13] |
LI X F, LI H B, LIU Y Q, et al. Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs[J]. Tunnelling and Underground Space Technology, 2016, 53: 96-108. doi: 10.1016/j.tust.2015.12.010
|
[14] |
CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010. doi: 10.1016/j.ijrmms.2007.02.002
|
[15] |
刘广, 荣冠, 彭俊, 等. 矿物颗粒形状的岩石力学特性效应分析[J]. 岩土工程学报, 2013, 35(3): 540-550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303020.htm
LIU Guang, RONG Guan, PENG Jun, et al. Mechanical behaviors of rock affected by mineral particle shapes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 540-550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303020.htm
|
[16] |
LI X F, ZHANG Q B, LI H B, et al. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2018, 51(12): 3785-3817. doi: 10.1007/s00603-018-1566-2
|
[17] |
LAN H, MARTIN C D, HU B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B01202): 1-14.
|
[18] |
LI X F, LI H B, ZHAO J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock[J]. Computers and Geotechnics, 2017, 90: 96-112. doi: 10.1016/j.compgeo.2017.05.023
|
[19] |
周喻, 高永涛, 吴顺川, 等. 效晶质模型及岩石力学特征细观研究[J]. 岩石力学与工程学报, 2015, 34(3): 511-519.
ZHOU Yu, GAO Yong-tao, WU Shun-chuan, et al. An equivalent crystal model for mesoscopic behaviour of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 511-519. (in Chinese)
|
[20] |
BEWICK R P, KAISER P K, BAWDEN W F, et al. DEM simulation of direct shear: 1 Rupture under constant normal stress boundary conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1647-1671. doi: 10.1007/s00603-013-0490-8
|
[21] |
HOFMANN H, BABADAGLI T, ZIMMERMANN G. A grain based modeling study of fracture branching during compression tests in granites[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 152-162. doi: 10.1016/j.ijrmms.2015.04.008
|
[22] |
PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135-154. doi: 10.1007/s00603-017-1316-x
|
[23] |
POTYONDY D O. A grain-based model for rock: approaching the true microstructure[C]//Proceedings of the Rock Mechanics in the Nordic Countries, 2010, Kongsberg: 225-234.
|
[24] |
ZHANG Y, WONG L N Y, CHAN K K. An Extended Grain‐Based Model Accounting for Microstructures in Rock Deformation[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 125-148. doi: 10.1029/2018JB016165
|
[25] |
PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073. doi: 10.1002/2016JB013469
|
[26] |
LI X F, LI H B, ZHAO J. The role of transgranular capability in grain-based modelling of crystalline rocks[J]. Computers and Geotechnics, 2019, 110: 161-183. doi: 10.1016/j.compgeo.2019.02.018
|
[27] |
MEHRANPOUR M H, KULATILAKE P H S W. Improvements for the smooth joint contact model of the particle flow code and its applications[J]. Computers and Geotechnics, 2017, 87: 163-177. doi: 10.1016/j.compgeo.2017.02.012
|
[28] |
DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003
|
[29] |
张国凯, 李海波, 王明洋, 等. 岩石单轴压缩下损伤表征及演化规律对比研究[J]. 岩土工程学报, 2019, 41(6): 1074-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906013.htm
ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, et al. Comparative study on damage characterization and damage evolution of rock under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1074-1082. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906013.htm
|
[30] |
朱俊, 邓建辉, 黄弈茗, 等. 饱和大理岩特征强度试验研究[J]. 岩石力学与工程学报, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
ZHU Jun, DENG Jian-hui, HUANG Yi-min, et al. Experimental study on the characteristic strength of saturated marble[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1129-1138. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906005.htm
|
[31] |
HAZZARD J F, YOUNG R P, MAXWELL S C. Micromechanical modeling of cracking and failure in brittle rocks[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B7): 16683-16697. doi: 10.1029/2000JB900085
|
[32] |
穆康, 李天斌, 俞缙, 等. 围压效应下砂岩声发射与压缩变形关系的细观模拟[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2786-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1028.htm
MU Kang, LI Tian-bin, YU Jin, et al. Mesoscopic simulation of relationship of acoustic emission and compressive deformation behavior in sandstone under confining pressure effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2786-2793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1028.htm
|
[33] |
KRANZ R L. Crack-crack and crack-pore interactions in stressed granite[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, Pergamon: 37-47.
|
[34] |
MOORE D E, LOCKNER D A. The role of microcracking in shear-fracture propagation in granite[J]. Journal of Structural Geology, 1995, 17(1): 95-114. doi: 10.1016/0191-8141(94)E0018-T
|