• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Song-yu, GUO Yi-mu, ZHANG Guo-zhu, ZHOU You. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 354-361. DOI: 10.11779/CJGE202002017
Citation: LIU Song-yu, GUO Yi-mu, ZHANG Guo-zhu, ZHOU You. Development and application of heat conduction CPT probe[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 354-361. DOI: 10.11779/CJGE202002017

Development and application of heat conduction CPT probe

More Information
  • Received Date: March 10, 2019
  • Available Online: December 07, 2022
  • The thermal conductivity is the key parameter to the design of many projects, such as energy structures, high-voltage buried power cables and permafrost embankment, related to estimating the heat transfer capability and temperature field in the soil. However, at present there is no effective in-situ testing method. Based on the theory of instantaneous heat release along a line source, a heat conduction cone penetration test (CPT) probe for thermal conductivity evaluation of in-situ soil is developed. According to the theoretical assumptions and the sizes of CPT system, the length, diameter, internal structure and positions of the temperature sensors are introduced. Then, the corresponding test procedure and the method for thermal conductivity are proposed. The test process is simulated in COMSOL to verify the method, and the results validate that the actual heat transfer conforms to the line source theory. The interpretation method yields reasonable values within a general range of conductivities. For less conductive soil (<0.6 W/ (m·K)), longer duration of heat dissipation may be required. The field test results show that the in-situ soil conductivity is higher than that from laboratory tests on undisturbed samples, indicating the sampling disturbance may be responsible for this reduction. Finally, some suggestions on laboratory thermal conductivity tests and engineering designs are given.
  • [1]
    BRANDON T, MITCHELL J, CAMERON J. Thermal instability in buried cable backfills[J]. Journal of Geotechnical Engineering, 1989, 115(1): 38-55. doi: 10.1061/(ASCE)0733-9410(1989)115:1(38)
    [2]
    SLEGEL D L, DAVIS L. Transient heat and mass transfer in soils in the vicinity of heated porous pipes[J]. Journal of Heat Transfer, 1977, 99(4): 541-546. doi: 10.1115/1.3450739
    [3]
    白冰, 赵成刚. 温度对黏性土介质力学特性的影响[J]. 岩土力学, 2003, 24(4): 533-537. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304012.htm

    BAI Bing, ZHAO Cheng-gang. Temperature effects on mechanical characteristics of clay soils[J]. Rock and Soil Mechanics, 2003, 24(4): 533-537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200304012.htm
    [4]
    LACKNER R, AMON A, LAGGER H. Artificial ground freezing of fully saturated soil: thermal problem[J]. Journal of Engineering Mechanics, 2005, 131(2): 211-220. doi: 10.1061/(ASCE)0733-9399(2005)131:2(211)
    [5]
    商允虎, 牛富俊, 刘明浩, 等. 多年冻土区桥梁工程桩基础服役期温度场研究[J]. 岩石力学与工程学报, 2017, 36(9): 2313-2323. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709026.htm

    SHANG Yun-hui, NIU Fu-jun, LIU Ming-hao, et al. Long-term effect of a pile foundation on ground temperatures in permafrost regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2313-2323. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709026.htm
    [6]
    BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81-122. doi: 10.1680/geot.2006.56.2.81
    [7]
    FAROUKI O T. Thermal Properties of Soils, CRREL Monograph 81-1[R]. New Hampshire: U. S. Army Cold Regions Research and Engineering Laboratory Hanover, 1981.
    [8]
    LOW J E, LOVERIDGE F A, POWRIE W, et al. A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications[J]. Acta Geotechnica, 2015, 10(2): 209-218. doi: 10.1007/s11440-014-0333-0
    [9]
    郭志光, 白冰. 描述饱和土热固结过程的一个非线性模型及数值分析[J]. 岩土工程学报, 2018, 40(11): 2061-2067. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811014.htm

    GUO Zhi-guang, BAI Bing. Nonlinear model and numerical simulation of thermal consolidation process of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2061-2067. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201811014.htm
    [10]
    BRANDON T, MITCHELL J. Factors influencing thermal resistivity of sands[J]. Journal of Geotechnical Engineering, 1989, 115(12): 1683-1698. doi: 10.1061/(ASCE)0733-9410(1989)115:12(1683)
    [11]
    ASTM. D5334-14:Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure[S]. West Conshohocken, PA, USA; ASTM International. 2014.
    [12]
    IEEE Std 442-1981 IEEE Guide for Soil Thermal Resistivity Measurements[S]. New York; Institute of Electrical and Electronics Engineers, 1981.
    [13]
    GANGADHARA RAO M, SINGH D. A generalized relationship to estimate thermal resistivity of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 767-773. doi: 10.1139/t99-037
    [14]
    ABU-HAMDEH N H, REEDER R C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter[J]. Soil Science Society of America Journal, 2000, 64: 1285-1290. doi: 10.2136/sssaj2000.6441285x
    [15]
    SINGH D N, DEVID K. Generalized relationships for estimating soil thermal resistivity[J]. Experimental Thermal and Fluid Science, 2000, 22(3): 133-143.
    [16]
    肖琳, 李晓昭, 赵晓豹, 等. 含水量与孔隙率对土体热导率影响的室内实验[J]. 解放军理工大学学报(自然科学版), 2008, 9(3): 241-247. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200803009.htm

    XIAO Lin, LI Xiao-zhao, ZHAO Xiao-bao, et al. Laroratory on influences of moisture content and porosity on thermal conductivity of soils[J]. Journal of PLA University of Science and Technology, 2008, 9(3): 241-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200803009.htm
    [17]
    BARRY-MACAULAY D, BOUAZZA A, SINGH R M, et al. Thermal conductivity of soils and rocks from the Melbourne (Australia) region[J]. Engineering Geology, 2013, 164: 131-138. doi: 10.1016/j.enggeo.2013.06.014
    [18]
    ABUEL-NAGA H, BERGADO D, BOUAZZA A. Thermal conductivity evolution of saturated clay under consolidation process[J]. International Journal of Geomechanics, 2008, 8(2): 114-122. doi: 10.1061/(ASCE)1532-3641(2008)8:2(114)
    [19]
    ASHRAE, Methods for determining soil and rock formation thermal properties from short-term field tests, ASHRAE Research Summary 1118-TRP[R]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2002.
    [20]
    SANNER B, HELLSTR M G, SPITLER J, et al. Thermal response test-current status and world-wide application[C]//Proceedings of the World Geothermal Congress. Antalya, Turkey, 2005: 1-9.
    [21]
    ZHANG C, GUO Z, LIU Y, et al. A review on thermal response test of ground-coupled heat pump systems[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 851-867. doi: 10.1016/j.rser.2014.08.018
    [22]
    DENG Y, FEDLER C. Multi-layered soil effects on vertical ground-coupled heat pump design[J]. Transactions of the ASAE, 1992, 35(2): 687-694.
    [23]
    FUJII H, OKUBO H, NISHI K, et al. An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers[J]. Geothermics, 2009, 38(4): 399-406.
    [24]
    EWEN J, THOMAS H R. The thermal probe—measurement of the thermal conductivity and drying rate of soil in the field[J]. Geotechnical Testing Journal, 1992, 15(3): 256-263.
    [25]
    AKROUCH G A, BRIAUD J-L, SANCHEZ M, et al. Thermal cone test to determine soil thermal properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142(3): 04015085.
    [26]
    BLACKWELL J. The axial-flow error in the thermal- conductivity probe[J]. Canadian Journal of Physics, 1956, 34(4): 412-417.
    [27]
    Hukseflux Inc. Hukseflux Thermal Sensors. MTN01 Manual[M]. Cersion 1008. The Netherlands, Delft: Hukseflux Inc., 2003.
    [28]
    Decagon Devices, Inc. KD2 Pro Thermal Properties Analyzer Operator's Manual[M]. Version 5. Pullman, Washington: Decagon Devices, Inc., 2008.
    [29]
    CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M]. 2nd ed. Oxford: Clarendon Press, 1959.

Catalog

    Article views (339) PDF downloads (252) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return